6 research outputs found

    Quantum sensing of magnetic fields with molecular spins

    Get PDF
    Spins are prototypical systems with the potential to probe magnetic fields down to the atomic scale limit. Exploiting their quantum nature through appropriate sensing protocols allows to enlarge their applicability to fields not always accessible by classical sensors. Here we first show that quantum sensing protocols for AC magnetic fields can be implemented with molecular spin ensembles embedded into hybrid quantum circuits. We then show that, using only echo detection at microwave frequency and no optical readout, Dynamical Decoupling protocols synchronized with the AC magnetic fields can enhance sensitivity up to S ≈ 10^(−10) − 10^(−9) T Hz^(−1/2) with a low (4-5) number of applied pulses. These results paves the way for the development of strategies to exploit molecular spins as quantum sensors

    Storage and retrieval of microwave pulses with molecular spin ensembles

    Get PDF
    Abstract Hybrid architectures combining complementary quantum systems will be largely used in quantum technologies and the integration of different components is one of the key issues. Thanks to their long coherence times and the easy manipulation with microwave pulses, electron spins hold a potential for the realization of quantum memories. Here, we test diluted oxovanadium tetraphenyl porphyrin (VO(TPP)) as a prototypical molecular spin system for the Storage/Retrieval of microwave pulses when embedded into planar superconducting microwave resonators. We first investigate the efficiency of several pulse sequences in addressing the spins. The Carr-Purcell and the Uhrig Dynamical Decoupling enhance the memory time up to three times with three π pulses. We then successfully store and retrieve trains of up to 5 small pulses by using a single recovery pulse. These results demonstrate the memory capabilities of molecular spin ensembles when embedded into quantum circuits

    Direct detection of spin polarization in photoinduced charge transfer through a chiral bridge

    Get PDF
    It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality

    Longitudinal and transverse NMR relaxivities of Ln(III)-DOTA complexes: A comprehensive investigation

    No full text
    Longitudinal and transverse 1H nuclear magnetic resonance relaxivities of Ln(III)-DOTA complexes (with Ln = Gd, Tb, Dy, Er; DOTA = 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid) and Mn(II) aqueous solutions were measured in a wide range of frequencies, 10 kHz to 700 MHz. The experimental data were interpreted by means of models derived from the Solomon-Bloembergen-Morgan theory. The data analysis was performed assuming the orbital angular momentum L = 0 for Gd-DOTA and the aqua ion [Mn(H2O)6]2+ and L ≠ 0 for Dy-, Tb-, and Er-DOTA. A refined estimation of the zero-field-splitting barrier Δand of the modulation correlation time τv was obtained for [Mn(H2O)6]2+ by extending the fitting of nuclear magnetic relaxation dispersion profiles to the low-field regime. The Gd-DOTA fitting parameters resulted in good agreement with the literature, and the fit of transverse relaxivity data confirmed the negligibility of the scalar interaction in the nuclear relaxation mechanism. Larger transverse relaxivities of Dy-DOTA and Tb-DOTA (∼10 mM-1 s-1) with respect to Er-DOTA (∼1 mM-1 s-1) were observed at 16 T. Such higher values are suggested to be due to a shorter residence time τm that is possibly linked to the fluctuations of the hyperfine interaction and the different shape of the magnetic anisotropy. The possible employment of Dy-DOTA, Tb-DOTA, and Er-DOTA as negative magnetic resonance imaging contrast agents for high-field applications was envisaged by collecting spin-echo images at 7 T. Particularly in Dy- and Tb-derivatives, the transverse relaxivity at 16 T is of the order of the Gd-one at 1.5 T

    The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits

    No full text
    Understanding phonon-induced relaxation in molecular qubits is a crucial step in realizing their application potential. Garlatti at al. use a combination of inelastic X-ray scattering and density functional theory to investigate the role of low-energy phonons on spin relaxation of a prototypical molecular qubit.Improving the performance of molecular qubits is a fundamental milestone towards unleashing the power of molecular magnetism in the second quantum revolution. Taming spin relaxation and decoherence due to vibrations is crucial to reach this milestone, but this is hindered by our lack of understanding on the nature of vibrations and their coupling to spins. Here we propose a synergistic approach to study a prototypical molecular qubit. It combines inelastic X-ray scattering to measure phonon dispersions along the main symmetry directions of the crystal and spin dynamics simulations based on DFT. We show that the canonical Debye picture of lattice dynamics breaks down and that intra-molecular vibrations with very-low energies of 1-2 meV are largely responsible for spin relaxation up to ambient temperature. We identify the origin of these modes, thus providing a rationale for improving spin coherence. The power and flexibility of our approach open new avenues for the investigation of magnetic molecules with the potential of removing roadblocks toward their use in quantum devices
    corecore