4,471 research outputs found

    Boundary conditions in the Dirac approach to graphene devices

    Get PDF
    We study a family of local boundary conditions for the Dirac problem corresponding to the continuum limit of graphene, both for nanoribbons and nanodots. We show that, among the members of such family, MIT bag boundary conditions are the ones which are in closest agreement with available experiments. For nanotubes of arbitrary chirality satisfying these last boundary conditions, we evaluate the Casimir energy via zeta function regularization, in such a way that the limit of nanoribbons is clearly determined.Comment: 10 pages, no figure. Section on Casimir energy adde

    Undulated cylinders of charged diblock copolymers

    Full text link
    We study the cylinder to sphere morphological transition of diblock copolymers in aqueous solution with a hydrophobic block and a charged block. We find a metastable undulated cylinder configuration for a range of charge and salt concentrations which, nevertheless, occurs above the threshold where spheres are thermodynamically favorable. By modeling the shape of the cylinder ends, we find that the free energy barrier for the transition from cylinders to spheres is quite large and that this barrier falls significantly in the limit of high polymer charge and low solution salinity. This suggests that observed undulated cylinder phases are kinetically trapped structures
    • …
    corecore