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ABSTRACT
In the theory of surface diffeomorphisms relative to homoclinic and heteroclinic orbits, it is
possible to compute a one-dimensional representative map for any irreducible isotopy class.
The topological entropy of this graph representative is equal to the growth rate of the number of
essential Nielsen classes of a given period, and hence is a lower bound for the topological
entropy of the diffeomorphism. In this paper, we show that this entropy bound is the infemum of
the topological entropies of diffeomorphisms in the isotopy class, and give necessary and
sufficient conditions for the infemal entropy to be a minimum.
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Abstract

In the theory of surface diffeomorphisms relative to homoclinic and heteroclinic orbits,
it is possible to compute a one-dimensional representative map for any irreducible isotopy
class. The topological entropy of this graph representative is equal to the growth rate of
the number of essential Nielsen classes of a given period, and hence is a lower bound for the
topological entropy of the diffeomorphism. In this paper, we show that this entropy bound
is the infemum of the topological entropies of diffeomorphisms in the isotopy class, and give
necessary and sufficient conditions for the infemal entropy to be a minimum.
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1 Introduction

In the Nielsen-Thurston theory of surface diffeomorphisms (see [3]), it is possible to find a
diffeomorphism in each isotopy class which minimises both the number of periodic orbits of
each period, and the topological entropy (see [9, 7, 10, 2]). A constructive proof was given
independently by Bestvina and Handel [1] and by Franks and Misiurewicz [8]; a one-dimensional
representative of the diffeomorphism called a train track is computed and the Thurston-minimal
model is easily constructed from this.

The case of diffeomorphisms relative to homoclinic orbits to a saddle point is more compli-
cated. It is well-known that any diffeomorphism with a transverse homoclinic point has positive
topological entropy, but it is easy to construct examples of such diffeomorphisms with arbitrar-
ily small entropy. Therefore, it may not even be possible to find a diffeomorphism realising the
lower bound of the entropy.

In this paper, we discuss the relation between the Nielsen entropy, which measures the growth
rate of the number of essential Nielsen classes of periodic points, and the infemal entropy in the
isotopy class. The Nielsen entropy is equal to the topological entropy of the graph representative,
which can be computed using the algorithms described in [5]. The key step is to represent the
isotopy class relative to the homoclinic/heteroclinic orbits using a trellis, which is a subset of
the homoclinic tangle of the saddle periodic points. We show that under mild non-degeneracy
conditions, the Nielsen entropy is equal to the infemum of the topological entropies in the isotopy

∗This work was partially funded by Leverhulme Special Research Fellowship SRF/4/9900172.
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class. This result can be considered an optimality result for the computational techniques of the
trellis theory.

The proof that the Nielsen entropy is infemal involves the construction of uniformly-hyperbolic
diffeomorphisms realising the entropy bound arbitrarily closely. In certain cases, it is possible
to construct a uniformly-hyperbolic diffeomorphism realising the entropy bound. We show that
the only obstruction to the construction of a uniformly hyperbolic diffeomorphisms realising the
entropy bound is the existence of almost wandering segments; intervals of (un)stable manifold
which must contain intersection points under some iterate of any representative diffeomorphism,
but for which no lower bound on the number of iterates needed exists. We further show that if
the Nielsen entropy is realised and the system is irreducible, then any isotopy which removes any
of the intersection points of the trellis also reduces the Nielsen entropy. As well as uniformly-
hyperbolic diffeomorphisms, we also consider the construction of pseudo-Anosov diffeomorphisms
realising the entropy bound.

The main results of the paper are summarised in the following theorem.

Main Theorem Let [f ;T ] be a well-formed trellis type. Then for any ε > 0 there exists
(f̂ , T̂ ) ∈ [f ;T ] such that htop(f̂) < hniel [f ;T ] + ε. If there exists a diffeomorphism f̂ isotopic

to f relative to T such that any f̂ -extension of T is minimal, then there exists a uniformly-
hyperbolic diffeomorphism f̃ isotopic to f relative to T such that htop(f̃) = hniel [f ;T ]. Further,

if [f ;T ] is irreducible and (f̃ , T ) ∈ [f ;T ] such that htop(f̃) = hniel [f ;T ], then any f̃ -extension
of T is minimal.

The paper is organised as follows. In section 2 we provide an overview of the trellis theory
used in the paper. In section 3, we prove some technical results on the geometry of a trellis
and the associated dynamics near the periodic saddle points. The main results of the paper are
contained in section 4, and are preceded by a number of illustrative examples.

2 An overview of trellis theory

In this section we introduce the notion of trellis and trellis type, and relate these to the well-
known notion of homoclinic/heteroclinic orbit and tangle. We give a number of definitions which
allow us to describe some of the basic properties of trellises. We then give some definitions
concerning homotopy and isotopy classes of curves. Finally, we review the definitions of (thick)
graphs, and show how to associate a graph representative to each irreducible trellis type. Most of
these definitions are also given in [5]. Throughout this paper, we restrict to compact, orientable
surfaces, possibly with boundary.

2.1 Tangles and Trellises

If P is an invariant set of periodic saddle points of a surface diffeomorphism f , we denote
the stable and unstable sets of P by W S(f ;P ) and WU (f ;P ) respectively. A tangle W for
a diffeomorphism f is a pair (WU ,WS) where WU = WU (f ;P ) and W S = WS(f ;P ) for
some invariant set of periodic saddle points P of f . If P consists of a single point, then W
is a homoclinic tangle, otherwise W is a heteroclinic tangle. A branch of W U/S(f ;P ) is a
component of WU/S \ P , where we use the notation U/S for statements which hold for both
stable and unstable manifolds.

Let f be a diffeomorphism of a surface M with a finite invariant set P of hyperbolic saddle
points. A trellis for f is a pair T = (TU , TS), where TU and TS are subsets of WU (f ;P ) and
WS(f ;P ) respectively such that:
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Figure 1: A trellis T3 for a diffeomorphism f3

(1). TU and TS are both the union of finitely many compact intervals with non-empty interiors,

(2). f(TU ) ⊃ TU and f(TS) ⊂ TS .

We write (f ;T ) to denote the pair consisting of a diffeomorphism f and a trellis T for f . An
intersection point of a tangle T is a point in T U ∩ TS , and is a point of a periodic, homoclinic
or heteroclinic orbit. We denote the set of intersections by T V , and the set of periodic points
of TU ∪ TS by TP . An intersection point q is transverse or tangential according to whether T U

and TS cross transversely or tangentially at q. A trellis is transverse if all intersection points
are transverse.

We denote the closed interval in TU/S with endpoints a and b by TU/S [a, b], and the open
interval by TU/S(a, b). An arc of TU/S is a closed subinterval of TU/S with endpoints in T V .
A segment of TU/S is an arc of TU/S with no topologically transverse intersection points in its
interior. A segment S is periodic if f±n(S) ⊂ S for some n, or equivalently, if it contains a point
of TP .

An endpoint of TU/S is a point which is at the end of an interval of TU/S ; we denote the
set of endpoints of TU/S by ∂TU/S . An end interval of TU/S is a subinterval of TU/S with one
endpoint in T V and the other in ∂TU/S . An intersection point is an end intersection point if is
contained in some end interval, or equivalently, if it is not contained in the interior of any arc.

As long as no segment of TU maps into an end interval of TU under f−1, and no segment of
TS maps into an end interval of T S under f , the end intervals are dynamically irrelevant, and
can be removed freely. If we know the orientation of the intersection at an endpoint v of T U/S ,
then small end intervals may be freely introduced at v.

A branch of TU/S is the closure of the intersection of TU/S with a branch of WU/S , and may
be connected or disconnected. A connected branch is trivial if it contains no points of T V \ TP ,
so is either a single point or an end interval.

A trellis T = (TU , TS) for a diffeomorphism f is well-formed if every component of T U∪f(TS)
contains a point of TP .

An open region of T is a component of M \ (TU ∪TS). A (closed) region is the closure of an
open region, and hence includes the stable and unstable boundary segments. A (closed) domain
of T is a closed subset of M with boundary in TU ∪TS ; note that we do not require domains to
be simply-connected, though this is the case we will usually consider.

There are two special types of region which play an important role, namely bigons and
rectangles. A bigon is a region which is a topological disc bounded by one stable and one
unstable segment with internal angles less than π. A rectangle is a region which is a topological
disc bounded by two stable and two unstable segments with internal angles less than π.

The type-3 trellis T3 is depicted in figure 1. It is formed by subsets of the stable and unstable
manifolds of the direct saddle fixed point (i.e. the saddle point with positive eigenvalues) of the
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Figure 2: Supertrellises. (a) A trellis T3e, (b) an iterate formed by taking f−1(TS
3e), (c) an

extension which is not an iterate, and (f) a supertrellis which is not an extension.

Hénon map for certain parameter values. The stable and unstable sets are subsets of the stable
and unstable manifolds of the saddle fixed point p; the stable set is drawn in a thicker line width
than the unstable set. The branches of this trellis are connected and all the intersection points
are transverse. There are ten regions, an unbounded region R∞, five bigons, three rectangles,
and a hexagon R1. The points p, q0 and q3 are the end intersections. The points q0, q1, q2 and
q3 are intersection points on a single homoclinic orbit. The orbits of the intersection points v0

and v1 are shown in white dots. One of the unstable branches of the trellis ends in an attracting
fixed point, a and one of the stable branches contains only of {p}, and so is trivial. Both of
these are therefore trivial branches.

A surface diffeomorphism f with a periodic saddle orbit has infinitely many trellises, which
are partially ordered by inclusion. Taking a smaller trellis gives a subtrellis, and a larger trellis
a supertrellis. Thus T is a subtrellis of T̂ if TU/S ⊂ T̂U/S , and T is a subtrellis of a tangle
W if TU/S ⊂ WU/S . We say T̂ is an f-supertrellis of T and Ŵ is an f-supertangle of T . Of
particular importance are those supertrellises which can be obtained by iterating segments or
branches. A trellis T̂ is an f-iterate of T if there exist positive integers nu and ns such that
T̂U = fnu(TU ) and T̂S = f−ns(TS). A trellis T̂ is an f-extension of T if there exists n such that
TU ⊂ T̂U ⊂ fn(TU ) and TS ⊂ T̂S ⊂ f−n(TS). An iterate/extension is a stable iterate/extension
if T̂U = TU and an unstable iterate/extension if T̂S = TS .

Given a diffeomorphism f with a trellis T , we can obtain a canonical map of pairs by cutting
along unstable curves TU . The topological pair obtained by cutting along the T U is denoted
CT = (CTUM, CTUTS). The diffeomorphism f lifts to a map Cf on CT . Notice that the pair
CT = (CTUM, CTUTS) contains the pair (M \ TU , TS \ TU ) as an open subset which is invariant
under Cf . Indeed, CTUM can be regarded as a natural compactification of M \ T U , and the
homotopy properties of (CTUM, CTUTS) and (M \ TU , TS \ TU ) are essentially the same.

2.2 Isotopies and trellis types

If T is a trellis, then by an isotopy relative to T , we mean an isotopy ft for t ∈ [0, 1] such that
T is a trellis for ft for all t. We write [f ]T for the isotopy class of f relative to T , and say
f0 and f1 are isotopic relative to T . We say (f0;T0) and (f1;T1) are conjugate if there is a

homeomorphism h such that h ◦ f0 = f1 ◦ h and h(T
U/S
0 ) = T

U/S
1 . These relations allow us to

define the equivalence classes of trellis map which will be our primary object of study.
The trellis mapping class ([f ];T ) is the set of all pairs (f̃ ;T ) for which f̃ ∈ [f ]T . The trellis

type [f ;T ] is the set of all pairs (f̂ , T̂ ) which are conjugate to some (f̃ ;T ) with f̃ ∈ [f ]T . We
consider (f0;T0) and (f1;T1) equivalent if [f0;T0] = [f1;T1].

The most important dynamical feature of a trellis type is its entropy, denoted htop [f ;T ], and
defined to be the infemum of the topological entropies of diffeomorphisms with a trellis in [f ;T ];
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Figure 3: The trellis shown in (b) is a minimal supertrellis (indeed, a minimal iterate) of that in
(a), but the trellis in (c) is not, since the shaded bigons do not contain a point in

⋃
n∈Z

f̃n(T V ).

that is
htop [f ;T ] = inf{htop(f̂) : (f̂ , T̂ ) ∈ [f ;T ]} . (1)

The Nielsen entropy of a trellis type [f ;T ], denoted hniel [f ;T ] is the growth rate of the number
of essential Nielsen classes of Cf ; that is

hniel [f ;T ] = lim sup
n→∞

logNn(Cf)

n
. (2)

See [4] for the definition of the relative Nielsen numbers Nn.
A trellis mapping class ([f ];T ) has an invariant-curve reduction if there is a closed one-

dimensional manifold C which is disjoint from TU ∪ TS , invariant under some f̃ with (f̃ ;T ) ∈
([f ];T ) such that each component of the complement of C either contains a point of T U ∪ TS ,
or has negative Euler characteristic. A trellis mapping class ([f ];T ) has an attractor-repeller
reduction if there is a diffeomorphism f̃ homotopic to f relative to T and a closed one-dimensional
manifold C such that C dividesM into subsets A and B with cl(f̃(A)) ⊂ int(A), and both A and
B contain a point of TP . If ([f ] : T ) has an invariant-curve reduction or an attractor-repeller
reduction, then ([f ];T ) is reducible, otherwise ([f ];T ) is irreducible.

We say a trellis T̂ is an [f ]-supertrellis of T if T̂ is a f̂ -supertrellis of T for some f̂ ∈ [f ]T . A
trellis T̃ is an [f ]-minimal supertrellis of T if

(1). T̃ is a trellis for a diffeomorphism f̃ ∈ [f ]T .

(2). every tangency of T̃ is a point of
⋃

n∈Z
f̃n(T V ),

(3). every bigon of T̃ contains a point of
⋃

n∈Z
f̃n(T V ), and either

(4). the end intersections of T̃U lie in f(TS) and the end intersections of T̃S lie in f−1(TU ), or

(5). T̃ is a subtrellis of a trellis T̂ which satisfies conditions (1) to (4).

The purpose of condition (5) is to allow the condition (4) on the end intersections of T̃U and T̃S

to be relaxed. A minimal supertrellis which is an extension or iterate is, respectively, a minimal
extension or a minimal iterate.

The Nielsen entropy of a minimal supertrellis is the same as that of the original trellis type,
as the following result (Theorem 5 of [5]) shows:

Theorem 2.1 (Nielsen entropy of minimal supertrellises) Let ([f ];T ) be a well-formed trellis
mapping class. If (f̃ ; T̃ ) is a trellis mapping class such that f̃ ∈ [f ]T and T̃ is an [f ]-minimal
supertrellis of f , then hniel [f̃ ; T̃ ] = hniel [f ;T ].

5



(c)(b)(a)

Figure 4: A pruning isotopy. The intersections marked with a circle in (a) are removed by the
tangency at (b), but the end intersections are preserved, resulting in the trellis shown in (c).

Given an isotopy of diffeomorphisms ft with a continuously-varying family of periodic orbits

Pt, we can construct a continuously-varying family of trellises Tt with T
U/S
t ⊂ WU/S(ft;Pt).

Of particular importance is the case that the endpoints of each T
U/S
t are intersections. In this

case, the only changes in the trellis type occur when Tt has tangential intersections. An isotopy
(ft;Tt) in which intersections are removed at tangencies, but not created, is a pruning isotopy.
An example of a pruning isotopy is shown in figure 4.

The following theorem (Theorem 1 of [5]) shows that entropy decreases during pruning.

Theorem 2.2 (Entropy decreases during pruning) Suppose (ft;Tt) is a pruning isotopy. Then
hniel [f0;T0] > hniel [f1;T1]. Further, any essential Nielsen class for [f1;T1] can be continued to
an essential Nielsen class for [f0;T0].

2.3 Graph maps

Our main tool for computing and describing the dynamics of a trellis mapping class is to relate
the trellis type to a graph map. This graph map can be used to compute the Nielsen entropy,
as shown in Sections 4 and 5 of [5]. In this paper, we only need to use the graph map in
Theorem 4.10 and Lemma 4.5, in which we consider changes in the Nielsen entropy.

We will mostly use the same terminology and notation for graphs as in [1], though many of
the same concepts are given in [8]. A graph G is a one-dimensional CW-complex with vertices
V (G) and edges E(G). Each edge has two orientations; the reverse of an directed edge e is
denoted ē and the initial vertex by ı(e). An edge-path is a list e1 . . . en of directed edges of G
such that ı(ēi) = ı(ei+1) for 1 6 i < n, and an edge loop is a cyclic list of directed edges also
satisfying ı(ēi) = ı(ei+1). The trivial edge-path contains no edges and is denoted •. The reverse
of an edge-path e1 . . . en is the edge-path ēn . . . ē1 An edge-path e1 . . . en back-tracks if ei+1 = ēi
for some i, otherwise it is tight. A graph map g is a self-map of G taking each vertex to a vertex,
and each directed edge e to an edge-path e1 . . . ek such that ı(e1) = g(ı(e)) for all directed edges
e, and g(ē) = g(e). The derivative map ∂g takes oriented edges to oriented edges or •, with
∂g(ei) = ej if g(ei) = ej . . . and ∂g(ei) = • if g(ei) = •.

We will always consider a graph embedded in a surface by an embedding i. This induces a
natural relation ¢ on the oriented edges starting at each vertex v given by e1 ¢ e2 if e2 is the
edge immediately following e1 in an anticlockwise loop at v. A pair of edges (e1, e2) is a turn in
G at vertex v if v = ı(e1) = ı(e2) and e1¢ e2, so e2 immediately follows e1 in the cyclic order at
v.

An edge-path π = p1, . . . , pn is an edge-loop if ı(p1) = ı(p̄n). An edge-loop π is peripheral in
G if (pi, p̄i−1) is a turn in G for all i, where we define p0 = pn. The peripheral subgraph P of g
is the maximal invariant subset of G consisting of a union of peripheral loops on which g acts
as a homeomorphism. Edges of P are called peripheral edges.
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Figure 5: (a) The type-3 trellis T3, (b) a controlled graph (G3,W3) compatible with the trellis
T3 embedded in (CTUM, CTUTS), and (c) the controlled graph (G3.W3), with the control edge
crossing the segment Si of T

S
3 labelled by zi.

The transition matrix of a graph map g is the matrix A = (aij) where aij counts the number
of times the undirected edge ej appears in the image path of edge ei. The largest eigenvalue of
A is the growth rate λ of g, and the logarithm of the growth rate gives the topological entropy
of g. A length function on G is a strictly-positive function l : E(G) −→ R. The length of
an edge-path e1e2 . . . en is defined to be l(e1e2 . . . en) =

∑n
i=1 l(ei). If g is a graph map with

topological entropy λ, then for any ε > 0 there is a length function with l(g(e)) < (λ+ ε)l(e) for
any edge e.

Let (G,W ) be a topological pair where G is a graph and W is a finite subset of G. The
pair (G,W ) is a controlled graph, and the edges of G containing points of W are called control
edges. A graph map g : (G,W ) −→ (G,W ) is a controlled graph map if g(z) is a control edge
whenever z is a control edge. A vertex of G which is the endpoint of a control edge is called a
control vertex. All other vertices are called free vertices, and edges which are not control edges
are called free edges.

To relate maps of pairs on different spaces, we need the notion of exact homotopy equivalence.
A map of pairs f : (X1, Y1) −→ (X2, Y2) is exact if f−1(Y2) = Y1. Pairs (X1, Y1) and (X2, Y2)
are exact homotopy equivalent if there are exact maps p1 : (X1, Y1) −→ (X2, Y2) and p2 :
(X2, Y2) −→ (X1, Y1) such that p2 ◦ p1 ∼ id and p1 ◦ p2 ∼ id. The map p1 is an exact homotopy
equivalence, and p2 is the exact homotopy inverse of p1. Maps of pairs f1 : (X1, Y1) −→ (X1, Y1)
and f2 : (X2, Y2) −→ (X2, Y2) are exact homotopy equivalent if there is an exact homotopy
equivalences p1 : (X1, Y1) −→ (X2, Y2) such that p1 ◦ f1 ∼ f2 ◦ p1. Note that all homotopies are
taken through maps of pairs which need not be exact.

A graph map representing the topology of a trellis via exact homotopy equivalence is called
compatible with the trellis. To avoid unnecessary complications, we restrict to transverse trellises,
and assume that the endpoints of TU are not intersection points, but that the endpoints of T S

are (in other words, we assume ∂TU ∩TS = ∅ but ∂T S ⊂ TU ). Let (G,W ) be a topological pair
where G is a graph and W is a finite subset of G. Then (G,W ) is compatible with a transverse
trellis T if (G,W ) and (CTUM, CTUTS) are exact homotopy equivalent by an embedding i :
(G,W ) −→ (CTUM, CTUTS). A controlled graph map g of (G,W ) is compatible with the trellis
mapping class ([f ];T ) if the embedding i is an exact homotopy equivalence between g and Cf ,
and for each pair (z, S), where z is a control edge crossing segment S, the relative orientation
of g(z) with the segment containing f(S) is the same as that of f(z) with f(S). The controlled
graph (G3,W3) compatible with the type-3 trellis T3 is shown in figure 5.

There are many controlled graph maps compatible with a trellis mapping class ([f ];T ).
Graph maps (g1;G1,W1) and (g2;G2,W2) are equivalent if there is a homeomorphism h :
(G1,W1) −→ (G2,W2) such that h ◦ g1 = g2 ◦ h. A controlled graph map (g;G,W ) is opti-
mal if for every turn e1 ¢ e2, either ∂g(e1) 6= ∂g(e2), or at least one of e1 or e2 is a control

7



edge. A controlled graph map (g;G,W ) is a graph representative of a transverse trellis type
[f ;T ] if (g;G,W ) is an optimal graph map which is compatible with ([f ];T ). The following
theorem (Theorem 7 of [5]) shows that every proper irreducible trellis type has a unique graph
representative.

Theorem 2.3 (Existence and uniqueness of graph representatives) Let [f ;T ] be a transverse
trellis type with no invariant curve reduction. Then [f ;T ] has a unique graph representative
(g;G,W ). Further, if [f0;T0] and [f1;T1] are trellis types, the graph representatives (g0;G0,W0)
and (g1;G1,W1) are equivalent if and only if [f0;T0] = [f1;T1].

In particular, this result shows that the graph representative provides a convenient way of
specifying a trellis type.

3 Quadrants, regular domains and alpha-chains

In this section we introduce two technical concepts which we require to analyse trellis mapping
classes. Regular domains are a local concept concerning neighbourhoods of T P , whereas alpha-
chains capture the global dynamics.

3.1 Curves and homotopies

The main tool for studying the geometry, topology and dynamics associated with trellis maps
will be to consider curves in topological pairs (X,Y ), which we will usually take to be either the
cut surface CT = (CTUM, CTUTS) or a controlled graph (G,W ). Since the geometry of CT can
easily be seen from T , we will illustrate curves in CTUM by drawing T , and showing the curve
embedded in M \ TU , as this is easier to visualise.

A curve α is a map in the category of topological pairs, α : (I, J) −→ (X,Y ), where I
is a compact interval. The path of such a curve α is the set α(I). A curve α2 : (I2, J2) −→
(X,Y ) is a reparameterisation of α1 : (I1, J1) −→ (X,Y ) if there is an orientation-preserving
homeomorphism (I1, J1) −→ (I2, J2) with h(J1) = J2 such that α1 = α2 ◦ h.

For the most part, we are only interested in curves up to homotopy or isotopy, and we
always take homotopies and isotopies of curves through maps of pairs. We write α0 ∼ α1 if
α0 is homotopic to α1. For Nielsen theory we will always keep the endpoints fixed during the
homotopy. For most other purposes, we only consider curves for which J contains the endpoints
of I, so that the endpoints of the curves αt lie in Y , but may move. If α : (I, J) −→ (X,Y )
is a curve and J contains the endpoints of I we say α has endpoints in Y . By Theorem 3.1 of
Epstein [6], if α0 and α1 are homotopic simple curves in an orientable surface, then they are
isotopic.

Reparameterising a curve but may change the set J which maps into Y . This means that
different parameterisations of the same path may not even be comparable under homotopy.
However, we consider different parameterisations of the same curve as equivalent.

Definition 3.1 (Homotopy equivalence of curves) Curves α1 : (I1, J1) −→ (X,Y ) and α2 :
(I2, J2) −→ (X,Y ) are homotopy equivalent if there is an orientation-preserving homeomorphism
h : (I1, J1) −→ (I2, J2) with h(J1) = J2 such that α1 ∼ α2 ◦h as curves (I1, J1) −→ (X,Y ). The
homotopy may be taken relative to endpoints, as appropriate.

We can also define a weaker notion.
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α2

α1

Figure 6: The exact curve α2 tightens onto α1.

Definition 3.2 (Tightening curves) Let α1 : (I1, J1) −→ (X,Y ) and α2 : (I2, J2) −→ (X,Y )
be exact curves. We say α2 tightens to α1 if there is an injective map h : (I1, J1) −→ (I2, J2)
such that α1 ∼ α2 ◦ h as curves (I1, J1) −→ (X,Y ).

It is immediate that the tightening relation (α2 tightens onto α1) is reflexive and transitive.
If we restrict to curves α : (I, J) −→ (X,Y ) where J has finitely many components, it is easy to
show that the tightening relation is also antisymmetric, so is a partial order on exact homotopy
classes.

We are especially interested in iterates with minimal number of components intersecting Y .

Definition 3.3 (Minimal iterates of curves) Let α : (I, J) −→ (X,Y ) be a simple curve
with endpoints in Y , and f : (X,Y ) −→ (X,Y ) be a map of pairs. Then a minimal iterate
of α under f is a curve β which is homotopic to f ◦ α relative to J and which minimises the
number of components of I mapping into Y . We let J ′ = β−1(Y ), and consider β as an exact
curve (I, J ′) −→ (X,Y ). If we further require that an intersection is isolated whenever possible,
then the curve β is well-defined up to equivalence, so we obtain a well-defined map fmin on
equivalence classes of curves given by fmin[α] = [β].

By fn
min[α] we mean (fmin)

n[α], and not (fn)min[α], which typically has fewer intersections. An
example of minimal and non-minimal iterates is given in figure 7. Taking repeated minimal
iterates of curves gives an alpha-chain.

Definition 3.4 (Alpha-chain) A list [αi], 0 6 i 6 k of homotopy classes of exact curves with
endpoints in Y is an alpha-chain if fmin[αi] tightens onto [αi+1] for 0 6 i < k.

If [α0] is an exact homotopy class of curve such that the initial endpoint of α0 lies in a compo-
nent Y0 of Y for which fn(Y0) ⊂ Y0, then taking repeated minimal iterates [αi] = f i

min[α0] gives
exact homotopy classes [αkn] with initial endpoint in Y0. We can consider how the component
Yi containing the first intersection of [αi] with Y evolves with i. Of particular interest is when
the component containing the first intersection with [αkn] is eventually constant.

Definition 3.5 (Exit set) Let Y0, Y1 be components of Y such that fn(Y0) ⊂ Y0, and [α] :
([0, 1], {0, 1}}) −→ (X,Y ) be a homotopy class of exact curves such that α(0) ∈ Y0 and α(1) ∈ Y1.
Then Y1 is an exit set for α if there is some minimal iterate αn = fn

min[α] and some t ∈ (0, 1)
such that αn|[0,t] is homotopy-equivalent to α0.

In other words, Y1 is an exit set if the initial part of some minimal iterate of α tightens onto α.
A similar definition holds for curves with initial endpoint at an essential period-n Nielsen class
of f , except that we take an exact homotopy class [α0] : ([0, 1], {1}) −→ (X,Y ), and perform
isotopies fixing α(0). An example of an exit set is shown in figure 7(b).

We will also need the following result of plane topology, which can be proved using results
of [6] and by passing to a universal cover.
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Figure 7: (a) The exact homotopy class [α1] is a minimal iterate of [α0], but [β1] is not, since it
contains extra intersections marked with black dots. (b) The segment S1 is an exit set for [α0]
starting at segment S0, since the initial part of [α1] = fmin[α0| tightens onto [α0].

q

S

p

Q p p p

(a) (c) (d)(b)

Figure 8: Sectors at p. (a) depicts a quadrant Q, (b) an attracting secant, (c) a repelling secant
and (d) a coquadrant.

Theorem 3.6 Let {αi : i = 0, . . . , n− 1} and {βi : i = 0, . . . , n− 1} be sets of mutually disjoint
simple curves with endpoints in T S which are disjoint from TU and have minimal intersections
with TS. Suppose that the homotopy classes of the αi are mutually disjoint, and that αi ∼ βi

for i = 0, . . . , n − 1. Then there is a isotopy ht such that h(TU ) = TU , h(TS) = TS, h0 = id
and h1 ◦ αi = βi for i = 0, . . . , n− 1.

3.2 Quadrants, attractors and repeller

In general, we do not have much control over the geometry of a trellis. The exception is near a
point of TP , where the dynamics are conjugate to a linear map. It is important to consider how
the nontrivial branches T divide the surface in a neighbourhood of T P .

Definition 3.7 (Quadrant, secant and coquadrant) Let T = (T U , TS) be a trellis such
that the endpoints of TU/S are points of T V . Then a sector Q of T at p is a local component of
a region of T in a neighbourhood of p. A sector is a quadrant if the boundary of Q at p forms
an angle less than π, in which case the boundary includes a piece of an unstable branch T U (Q)
and a piece of a stable branch T S(Q). A sector is an secant if the boundary at p forms an angle
exactly π, in which case the boundary includes an interval either T U or TS . We say the secant
is attracting if this is an interval in T S , and repelling if this is an interval of TU . A sector is a
coquadrant if the boundary of Q at p forms an angle greater than π.

Quadrants, secants and coquadrants are shown in figure 8. The type three trellis shown in
figure 1 has a quadrant Q contained in the region R0.

The image of a quadrant Q is the quadrant containing f(Q); note that T U/S(f(Q)) is the
same branch as f(TU/S(Q)). A stable segment S with endpoint q ∈ TU (Q) lies on the Q-side of
TU if locally S lies on the same side of TU (Q) at q as T S(Q) does at p. Similarly, an unstable
segment U with endpoint q ∈ T S(Q) lies on the Q-side of T S if locally U lies on the same side
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Figure 9: Attracting and repelling domains. (a) The domain A is an attracting domain with
stable fixed point a, and (b) the region B is a repelling domain with unstable fixed point b. (c)
A domain D with an attracting fixed point a and repelling fixed point b. Points enter D through
the region S, which is a stable region, and leave D through U , which is an unstable region.

of TS(Q) at q as TU (Q) does at p. The segment S in figure 8(a) lies on the Q-side of T U . We
write S(Q) for the first segment of T S crossing the branch TU (Q) which lies on the Q-side of
TU .

As well as saddle periodic orbits, diffeomorphisms also have attracting and repelling periodic
orbits. Clearly, a stable segment cannot be in the basin of attraction of an attracting orbit, and
neither can an unstable segment be in the basin of a repelling orbit. However, it is possible for
the interior of an entire domain to lie in the basin of an attracting or repelling periodic orbit.
Such domains are called stable or unstable domains (or regions).

Let T be a trellis for a diffeomorphism f .

Definition 3.8 (Attracting and repelling domains) A domain D of T is attracting if there
is a diffeomorphism f̃ ∈ [f ]T and a period-n point a ∈ int(D) of f̃ such that f̃ in(x)→ a as i→∞
for all x ∈ int(D). Similarly, a domain D of T is repelling if there is a diffeomorphism f̃ ∈ [f ]T
and a period-n point b ∈ int(D) of f̃ such that f̃−in(x) → b as i → ∞ for all x ∈ int(D). A
domain D of T is attracting/repelling if there is a diffeomorphism f̃ ∈ [f ]T such that D contains
an attracting period-n point a and a repelling period-n point b such that all x ∈ int(R), either
f̃ in(x)→ a or f̃−in(x)→ b as i→∞.

Examples of attracting and repelling domains are shown in figure 9.

Definition 3.9 (Stable and unstable domains) A domain D of T is stable if there is a
diffeomorphism f̃ isotopic to f relative to T and a period-n orbit a of f̃ such that f̃ in(x) → a
as i → ∞ for all x ∈ int(D). Similarly, a domain D is unstable if there is a diffeomorphism f̃
isotopic to f relative to T and a period-n orbit b of f̃ such that f̃−in(x) → b as i → ∞ for all
x ∈ int(D).

Note that T S is disjoint from the interior of A, TU is disjoint from the interior of B, and there are
no points of T V in D; this is immediate from the definitions. It is immediate that the interior of
an attracting or stable domain is disjoint from T S , the interior of a repelling or unstable domain
is disjoint from TU , and the interior of an attracting/repelling domain D contains no points of
T V . Further, there exists a diffeomorphism f̃ isotopic to f relative to T such that T̃ V contains
no intersection points in the interior of such a domain for any f̃ -extension of T .

In contrast, some regions of T contain an intersection point for some f̃ -iterate of T for any
f̃ ∈ [f ]T .
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Definition 3.10 (Chaotic region) Let ([f ];T ) be a trellis mapping class. A region R is chaotic
if for every diffeomorphism f̂ ∈ [f ]T , there exists an integer n such that f̂n(TU ) ∩ f̂−n(TS)
contains a point in the interior of R.

An open segment which is in the basin of an attracting or repelling periodic orbit is a wandering
set, and contains no intersection points. There are some nonwandering segments such that any
finite iterate need not contain an intersection point. We call such segments almost wandering.

Definition 3.11 (Almost wandering segment) Let ([f ];T ) be a trellis mapping class. An
open (unstable or stable) segment S is wandering if there is a diffeomorphism f̃ ∈ [f ]T such
that for all n ∈ Z, f̃n(S)∩T V = ∅. An open segment is almost wandering if for all n ∈ Z, there
exists f̃ ∈ [f ]T such that f̃n(S) ∩ T V = ∅, but for every diffeomorphism f̃ ∈ [f ]T , there exists
n ∈ Z such that f̃n(S) ∩ T V 6= ∅.

In other words, an open segment is wandering if there exists a diffeomorphism f̃ isotopic to f
relative to T such that every f̃ -iterate of the segment contains no intersection points. An open
segment is almost wandering if it is not wandering, but for every n, there exists f̃ isotopic to f
relative to T such that the nth f̃ -iterate of the segment contains no intersection points.

3.3 Regular quadrants

Any diffeomorphism is topologically conjugate to a linear hyperbolic diffeomorphism in a neigh-
bourhood of a hyperbolic periodic saddle orbit. We therefore expect a diffeomorphism f with
trellis T to behave in a fairly predictable way in a neighbourhood of a point of T P . In par-
ticular, we know how a rectangle with sides parallel to the local stable and unstable foliations
behaves. Unfortunately, for a given trellis mapping class, the neighbourhood of T P on which we
have hyperbolic behaviour may be arbitrarily small. To deal with this problem, we introduce
the concept of a regular domain, which is a rectangular domain which behaves similarly to a
sufficiently small rectangular neighbourhood of a periodic saddle point.

Definition 3.12 (Regular domain) Let f be a diffeomorphism with trellis T . A rectangular
domain D of T is a regular domain for (f ;T ) at a period-n quadrant Q of T if D has sides
TU [p, qu], TS [p, qs], TU [qs, r] and TS [qu, r], such that

(1u) fn(TU [p, qu]) ⊂ TU with fn(TU [p, qu]) ∩D = TU [p, qu],

(1s) f−n(TS [p, qs]) ⊂ TS with f−n(TS [p, qs]) ∩D = TS [p, qs],

(2u) f−n(TU [qs, r]) ∩D = ∅, and

(2s) fn(TS [qu, r]) ∩D = ∅.

The sides TU [p, qu] and TS [p, qs] are called the adjacent sides, and the sides TU [qs, r] and
TS [qu, r] are the opposite sides of D. Notice that the definition is invariant under time reversal
if we interchange TU and TS . In general, we therefore only need to prove statements on the
topology of a regular domain for either the unstable (u) or stable (s) case.

Definition 3.13 (Regular quadrant) A quadrant Q is regular if Q is contained in a regular
domain D such that D contains no points of T P .

A regular domain is shown in figure 10. We shall always denote the vertices of a regular
domain by p, qu, qs and r as used in the definition. We now give a number of elementary
properties of a regular domain.
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Figure 10: The domain D shown in (a) is a regular domain at a regular quadrant Q. The domain
D shown in (b) is also a regular domain, but Q is not a regular quadrant, since the point p̂ is a
point of TP in D.
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Figure 11: The domain D is a regular domain at quadrant Q in (c), but not in (a) or (b).

Lemma 3.14 Let D be a regular domain for (f ;T ) at Q. Then

(a). If f−(n+1)(TS [p, qs]) and f−1(TS [qu, r]) are subsets of T S, then f−1(D) is a regular domain
for (f ;T ) at Q.

(b). If f̃ is isotopic to f relative to T , then D is a regular domain for (f̃ ;T ) at Q.

(c). If T̂ is an f-extension of T , then D is a regular domain for (f ; T̂ ) at Q.

Proof:

(a). Since f−1(TU ) ⊂ TU , f−1(TS [p, qs]) ⊂ f−(n+1)(TS [p, qs]) ⊂ TS and f−1(TS [qu, r]) ⊂
TS , the boundary of f−1(D) is composed of segments of T . On the adjacent sides
we have fn(f−1(TU [p, qu])) ∩ f−1(D) = f−1(fn(TU [p, qu]) ∩ D) = f−1(TU [p, qu]) and
f−n(f−1(TS [p, qs])) ∩ f−1(D) = f−1(f−n(TU [p, qs]) ∩D) = f−1(TS [p, qs]). On the oppo-
site sides, we have fn(f−1(TS [qu, r]))∩f−1(D) = f−1(fn(TS [qu, r])∩D) = ∅ and similarly
f−n(f−1(TU [qs, r])) ∩ f−1(D) = ∅.

(b). Condition (1u) shows that fn(qu) ∈ T V , and thus f̃n(TU [p, qu]) = TU [f̃n(p), f̃n(qu)] =
TU [fn(p), fn(qu)] = fn(TU [p, qu]), so condition (1u) is satisfied for f̃ . If fn(r) ∈ T V , then
f̃n(TS [qu, r]) = fn(TS [qu, r]), so condition (2s) is satisfied. Otherwise, fn(TS [qu, r]) ⊂
TS(fn(qu), x) for some x ∈ T V such that T S(fn(r), x) contains no points of T V . Then
since TS [fn(qu), fn(r)]∩D = fn(TS [qu, r])∩D = ∅, we have T S [fn(qu), x)∩D = ∅, and
since f̃n(TS [qu, r]) ⊂ TS [fn(qu), x), we have f̃n(TS [qu, r]) ∩ D = ∅, so condition (2s) is
satisfied. A similar argument proves conditions (1s) and (2u).

(c). Since T̂U [p, qu] = TU [p, qu], we have fn(T̂U [p, qu]) = fn(TU [p, qu]) ⊂ TU [p, qu] ⊂
T̂U [p, qu], so condition (1u) is satisfied. Since T̂U [qs, r] = TU [qs, r], we have
f−n(T̂U [qs, r]) ∩ D = f−n(TU [qs, r]) ∩ D = ∅, so condition (2u) is satisfied. A similar
argument proves conditions (1s) and (2s).
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Figure 12: (a) The sub-domain D̃ is a regular domain if D is a regular domain. (b) A regular
domain D together with f−n(TS [qu, r]) = TS [f−n(qu), f−n(r)], which crosses TU [qs, r] since
f−n(r) 6∈ D.

2

Lemma 3.14(b) shows that being a regular domain or quadrant is a property of being a trellis
mapping class.

We now show how to construct regular subdomains of a regular domain.

Lemma 3.15 Let D be a regular domain for (f ;T ) at a quadrant Q.

(a). If T S [q̃u, r̃] ⊂ D is an arc with endpoints q̃u ∈ TU (p, qu) and r̃ ∈ TU (qs, r), then the
rectangular domain D̃ with vertices at {p, q̃u, qs, r̃} is a regular domain at Q.

Similarly, if TU [q̃s, r̃] ⊂ D is an arc with endpoints q̃s ∈ TS(p, qs) and r̃ ∈ T S(qu, r), then
the rectangular domain vertices at {p, qu, q̃s, r̃} is a regular domain at Q.

(b). If f−n(TS [qu, r]) ⊂ TS, then f−n(TS [qu, r]) contains a subinterval of the form T S [q̃u, r̃] ⊂
D such that q̃u = f−n(qu) ∈ TU (p, qu) and r̃ ∈ TU (qs, r).

Similarly, if fn(TU [qs, r]) ⊂ TU , then fn(TU [qs, r]) contains a subinterval of the form
TU [q̃s, r̃] ⊂ D such that q̃s = fn(qs) ∈ TS(p, qs) and r̃ ∈ T S(qu, r).

The constructions are illustrated in figure 12.

Proof:

(a). The only nontrivial step is to show fn(TS [q̃u, r̃]) ∩ D̃ = ∅. First, note that
fn(q̃u) ∈ TU (q̃u, fn(qu)), so fn(q̃u) 6∈ D̃. Further, fn(TS [q̃u, r̃]) ∩ TU [p, q̃u] =
fn(TS [q̃u, r̃]∩ f−n(TU [p, q̃u])) = fn(∅) = ∅ and fn(TS [q̃u, r̃])∩TU [qs, r̃] = fn(TS [q̃u, r̃]∩
f−n(TU [qs, r̃])) ⊂ fn(D ∩ f−n(TU [qs, r̃])) = ∅, so fn(TS [q̃u, r̃u]) does not intersect
the unstable boundary of D̃. Additionally, fn(TS [q̃u, r̃]) ∩ TS [p, qs] = fn(T s[q̃u, r̃] ∩
f−n(TS [p, qs])) ⊂ fn(TS [q̃u, r̃] ∩ TS [p, qs]) = ∅. It remains to show that fn(TS [q̃u, r̃])
is disjoint from T S [q̃u, r̃]. We have already seen that fn(TS [q̃u, r̃]) does not contain
q̃u or r̃. Further, fn({q̃u}) ∩ TS [q̃u, r̃] ⊂ fn(TU (p, qu)) ∩ TS [q̃u, r̃] = {q̃}, but clearly
fn(q̃u) 6= q̃u, so fn(q̃u) 6∈ TS [q̃u, r̃]. Since T S [q̃u, r̃] is an interval, this is enough to show
that fn(TS [q̃u, r̃])∩TS [q̃u, r̃] = ∅. Hence fn(TS [q̃u, r̃])∩∂D̃ = ∅, so fn(TS [q̃u, r̃])∩D̃ = ∅.
A similar analysis proves the statement for a curve T U [q̃s, r̃].

(b). Since fn(Q) = Q, fn is orientation-preserving, so the orientation of the intersection at
f−n(qu) is the same as that at qu. Further, f−n(TS [qu, r]) ∩ TU [p, qu] = f−n(TS [qu, r] ∩
fn(TU [p, qu])) = f−n(TS [qu, r] ∩ TU [p, qu]) = {f−n(qu)}, so f−n(TS(qu, r]) does not cross
TU [p, qu]. Finally, {f−n(r)} ∩ D ⊂ f−n(TU [qs, r]) ∩ D = ∅, so f−n(r) 6∈ D. Therefore,
f−n(TS [qu, r]) intersects TU [qs, r], and we let r̃ be the first such intersection.
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regular domain D. The exact homotopy class [αD] has minimal intersections with T S and
contains curves homotopic to TU [p, qu].

2

In Figure 13 we show a regular domain D of (f ;T ) at a quadrant Q. An application of
Lemma 3.15 shows that the rectangular domain with vertices at p, q̃u, qs and r̃ is a regular
domain for Q, and a further application of Lemma 3.15(a) shows that the rectangular domain
D̂ with vertices {p, q̃u, q̂s, r̂} is also a regular domain. By taking iterates of T , we can ensure
that Q has a regular domain contained in an arbitrarily small neighbourhood of p.

We are particularly interested in curves crossing a regular domain.

Definition 3.16 (Domain crossing curves) If D is a regular domain for a quadrant Q, we
say that a homotopy class of curves [α] crosses D if α(I) ⊂ D with α(0) ∈ T S [p, qs] and
α(1) ∈ T S [qu, r].

Let [αD] be the exact homotopy class of curve in D with initial endpoint in the segment
of TS [p, qs] containing p, final endpoint in the segment of T S [qu, r] containing qu, which has
minimal intersections with T S and is homotopic to TU [p, qu].

Let [αQ] be the homotopy class of an exact curve αQ : (I, ∂I) −→ CT with initial endpoint
in the segment of T S(Q) containing p, and the other in the segment S on the Q-side of T U (Q)
containing the first intersection of T S with TU (Q).

An exact homotopy class [α] crossing a regular domain D, together with the exact homotopy
classes [αD] and [αQ] are shown in figure 14

Lemma 3.17 Let Q be a regular period-n quadrant of (f ;T ), and D be a regular domain for
Q. Then

(a). there exists k such that fkn
min[αQ] tightens onto [αD], and

(b). if D̃ is any other regular domain for Q, then there exists k such that f kn
min[α eD

] tightens
onto [αD].
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Figure 15: A regular domain at a quadrant Q. (a) f kn
min[α] tightens onto [αi] for i = 0, 1, 2,

and fn
min[α] tightens onto itself. (b) Backward minimal iterates Si of segment S, iterates of one

endpoint converging to a point of T P .

Proof:

(a). Let S be the segment containing the final endpoint of [αQ], and q be the intersection of S
with TU (Q). Then q ∈ TU [p, qu], so there exists k such that fkn(q) ∈ TU [qu, fn(qu)]. For
this k, fkn ◦ αQ is a curve homotopic to TU relative endpoints, so leaves D through the
segment of T S [qu, r] containing qu. Hence fkn

min[αQ] tightens onto [αD].

(b). If q̃u ⊂ TU [p, qu], then [α eD
] tightens onto [αD], since both homotopy classes contain curves

lying along TU [p, qu]. Otherwise, there exists k such that f kn(q̃u) ∈ TU [qu, fn(qu)], and
then fkn

min[α eD
] tightens onto [αD].

2

Lemma 3.18 Let D be a regular domain for a period-n quadrant Q such that D contains no
point of TP in its interior. If [α] is any homotopy class of curves crossing D, then there exists
k such that fkn

min[α] tightens onto [αD].

Proof: Let [αi] be the exact homotopy class of the sub-curve of f in
min[α] from T S [p, qs] to

the first crossing with T S . Then for sufficiently large i, the initial endpoint of [αi] lies in the
segment of T S [p, qs] containing p. Since f is a homeomorphism and D is simply-connected, the
final endpoint of [αi] lies in a segment S for all i sufficiently large. We let [β] be the exact
homotopy class of curve from the segment of T S [p, qs] containing p to the segment S, as shown
in figure 15(a).

If fn(S) ⊂ S, then S contains a point of T P , a contradiction. Since the first crossing of
fn
min[β] with T S lies in segment S, it must be the case that f−n

min(S) has an essential crossing
with β. We can therefore define segments Si recursively by taking S0 = S and Si+1 to be the
segment of f−n

min(Si) with an essential crossing with β, as shown in figure 15(b). Since f is a
diffeomorphism, there are segments U0 and U1 of TU which contain the endpoints of Si for all
sufficiently large i. The segments containing f−n(U0) and f−n(U1) cannot both lie outside of D,
since then f−n

min(Si) would lie outside D. Hence there is an unstable segment U in the interior of
D such that f−n(U) ⊂ U , and so there is a point of T P in U . Then U must be the segment of
TU [p, qu] containing p, and hence one endpoint of S lies in TU [p, qu].

Therefore, the curve β is either homotopic to T U [p, q], or bounds a set B which contains
a subset of TU in its interior. However, we can isotope f so that B is repelling, and then the
interior of B must contain a periodic point in TU , a contradiction. If β is homotopic to TU [p, q],
we can use a similar argument to that used in Lemma 3.17 to show that some minimal iterate
of [β], and hence some fkn

min[α], tightens onto [αD]. 2

16



pu

ps

[α2][α1][α0]

q

f 3(q)

f 2(q)f(q)

[α3]

pu f−1(rs)

f(ru)[α0] [α1]

DU

DS

ru

ps

[β]

[α2]
rs

(a) (b)

Figure 16: Trellises with regular domains DU at pu and DS at ps. (a) There is an alpha-chain
from [αDU

] = [α0] to [α3] which tightens onto [αDS
]. (b) Since f(DU ) and f−1(DS) intersect

to form a rectangular domain, there is an alpha-chain from [αDU
] = [α0] to [α2], which is the

reverse of [αDS
].

Definition 3.19 (Transitive trellis mapping class) Let QU and QS be regular quadrants
contained in regular domains DU and DS , respectively. There is an alpha-chain linking QU to
QS if there is an alpha-chain from [αDU

] to [αDS
]. A trellis mapping class ([f ];T ) is transitive

if every quadrant Q is regular, and for pair of quadrants QU and QS , there is an alpha-chain
linking QU to QS .

An example of quadrants QU and QS for which there is a alpha-chain linking QU to QS is
shown in figure 16(a). Note that if there is an alpha-chain from [αDU

] to [αDS
], then there is an

alpha-chain from [α eDU
] to [α eDS

] for any regular domains D̃U and D̃S containing QU and QS .
Transitivity of a trellis mapping class is an especially useful property since it implies that the
trellis type has a transitive graph representative (see Lemma 4.9).

The following lemma gives a sufficient condition for the existence of an alpha-chain linking
QU to QS .

Lemma 3.20 Let DU and DS be regular domains for QU and QS with periods nu and ns,
respectively.

(a). If there exist ku and ks such that fkunu(DU ) ∩ f
−ksnsn(DS) is a rectangular domain with

unstable edges contained in fkunu(∂DU )∩ T
U and stable edges in f−ksns(∂DS)∩ T

S, then
there is an alpha-chain linking QU to QS.

(b). If there is an alpha-chain linking QU to QS for (f ;T ) and T̂ is an f-extension of T , then
there is an alpha-chain linking QU to QS for (f ; T̂ ).

Proof:

(a). Let β be a curve in fkunu(DU ) ∩ f−ksns(DS) such that [β] is the restriction of [αDU
] to

fkunu(DU ) ∩ f−ksns(DS), as shown in figure 16(b). Then fknnu [αDU
] tightens onto [β],

and since β is a curve crossing f−ksnsDS , we also have fksns

min [β] tightens onto [αDS
] by

Lemma 3.17. Hence fkunu+ksns

min [αDU
] tightens onto [αDS

] as required.

(b). LetDU andDS be regular domains containing QU and QS respectively such that fm
min[αDU

]
tightens onto [αDS

] for some m. By Lemma 3.14(c), DU and DS are still regular domains

for (f, T̂ ), and the curves [α̂DU
] and [α̂DS

] which cross DU and DS with minimal inter-

sections relative to T̂ tighten onto [αDU
] and [αDS

]. Then fm
min[α̂DU

] crosses DS , and by
Lemma 3.17(b), some fm+ksns

min [α̂DU
] tightens onto [α̂DS

] for some ks.

2
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Figure 17: Backward iterates of S with endpoint q eventually form the opposite stable side of a
regular domain with qs = f−kn(q).

We now show that the hyperbolicity near T P is enough to create intersections from which we
can deduce regularity. Note that for this result we are concerned with f -extensions of T rather
than [f ]-minimal extensions.

Lemma 3.21 Let T be a trellis for a diffeomorphism f , and let Q a quadrant of T . Let q ∈
TU (Q) be the endpoint of an unstable segment S on the Q-side of T S(Q), and let qs ∈ TS(Q)
be the endpoint of a stable segment U on the Q-side of T S(Q). Then there exists k such that
f−kn(S) intersects U at a point r such that {p, f−kn(q), qs, r} are the vertices of a regular domain
for Q.

Proof: By the Lambda lemma, f−in(S) limits on W S(Q) in the C1 topology as i → ∞.
Take a neighbourhood K of qs such that f−n(K) ∩ T S [p, qs] = ∅, and choose k such that
f−kn(S) intersects U in at a point r in K such that TU [qs, r] ⊂ K, and the domain D with
vertices at {p, f−kn(q), qs, r} is a rectangle which does not intersect f−n(K), and such that
TU [p, q]∩D = TU [p, f−kn(q)], as shown in figure 17. Let qu = f−kn(q), and T̂ = (TU , f−nk(TS)).
Then f−n(TU [qs, r]) ∩D ⊂ f−n(K) ∩D = ∅, and fn(TS [qu, r]) is contained in a segment with
one endpoint at fn(qu) 6∈ D, so fn(TS [qu, r]) ∩D = ∅. Hence D is a regular domain of (f ; T̂ ).

2

3.4 Construction of minimal supertrellises

Most of the procedures we will use to construct diffeomorphisms in a given trellis mapping class
rely on extending the original trellis and introducing new branches in a controlled way. The
most important type of supertrellis is a minimal supertrellis, since the Nielsen entropy for a
minimal supertrellis is the same as that of the original trellis mapping class.

We now show that we can introduce new stable and unstable branches at essential Nielsen
classes of f and obtain a minimal supertrellis. The only difficulty here is on finding the correct
initial segment of a branch; once this has been achieved, we can take minimal iterates. In the
sequel, arithmetic on i will be assumed to be modulo n.

We can use theorem 3.6 to construct the minimal supertrellises. We say that a periodic point
p of f shadows TP if p is Nielsen equivalent to a periodic point of T P ; this means that it can
be joined to a point of TP by an exact curve α such that fn

min[α] = [α].

Lemma 3.22 Let ([f ];T ) be a well-formed irreducible trellis mapping class. Then if p is an
essential periodic point of ([f ];T ) which does not shadow T P , there is an [f ]-minimal supertrellis
of T for which p is contained in a region which can be chosen to be attracting, repelling, or both.

Proof: Suppose that p is contained in a region R and has period n. We only consider the
construction of a minimal supertrellis with new unstable curves; the construction of new stable
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Figure 18: Supertrellises of the type-3 trellis shown in figure 1. The trellis shown in (a) is formed
by introducing new stable branches and forming an attracting region, and that in (b) is formed
by introducing new unstable branches and forming a repelling region.

curves follows by reversing time. Since p does not shadow T P , there must be an exit segment
S for P , and a simple curve γ from P to S such that the initial piece of f kn

min[γ] tightens onto γ
for some least k. Since p is essential, we must have k > 1. Let [γi] be the initial sub-curve of
f i
min[γ] from f i(p) to a stable segment for i = 0, . . . , nk − 1. Since h is a homeomorphism, the
curves γjn+i are cyclically ordered around f i(p), with γi being followed by γi+ln mod kn for some
l. We let [αi] be the homotopy class [γi · γi+ln mod kn]. The homotopy classes [αi] are distinct,
and the representative curves αi can be taken to be disjoint.

Let [βi+1] = fmin[αi], and note that each βi tightens onto αi and has minimal intersections
with TS . Without loss of generality, we can isotope each βi so that it contains αi as a sub-curve.
Since f ◦αi and βi+1 are homotopic in curves for the trellis (TU , f(TS)), by theorem 3.6, we can
find an isotopy ht such that ht(T

U ) = TU , ht(f(T
S)) = f(T S), h0 = id and h1 ◦f ◦α = β. Then

for the diffeomorphism f̃ = h1 ◦ f we have f̃−1(β(I)) = α(I). Since the curves βi have minimal
intersections with T S , the trellis T̃ with T̃U = TU ∪

⋃kn
i=1 β(I) and T̃S = TS is an [f ]-minimal

supertrellis of T . 2

Lemma 3.23 Let ([f ];T ) be a well-formed irreducible trellis mapping class, p ∈ T P and Q an
attracting or repelling secant at p.

(a). There there is a then there is an [f ]-minimal supertrellis T̃ of T for which Q is contained
in an attracting or repelling region.

(b). If Q lies in a chaotic region of T , then there is an [f ]-minimal supertrellis T̃ of T for which
there is a nontrivial branch of T̃U/S through Q.

Proof:

(a). Suppose Q is a repelling sector, and let R be the region containing Q. If R has only one
stable boundary segment, then R is already a repelling region and we are done. Otherwise,
let [γ0] be the exact homotopy class of curve in R joining two stable segments crossing
TU (p), and define exact homotopy classes [γi] recursively as follows. If fn

min[γi] crosses R,
we take [γi+1] to be a subcurve fn

min[γi] of crossing R.

Since R is not repelling, then there exists least i such that fn
min[γi] tightens onto itself. We

then take α = γi, and αi to be the sub-curve of f i
min[α0] in the region containing f i(p) for

i = 0, . . . , n − 1, and let βi+1 = fmin[αi]. By homotoping the αi and βi if necessary, we
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Figure 19: A trellis with a stable secant (a), and supertrellises. In (b) we create a new at-
tracting region as in Lemma 3.23(a); in (c) we subdivide the sector into two quadrants as in
Lemma 3.23(b).

can ensure that αi is an initial sub-curve of βi, and is tangent to TU at f i(p). We can
therefore find an isotopy ht fixing T

U and f(TS) with ht(0) = id and h1 ◦ f ◦ α = β. The
trellis T̃ with T̃U = TU ∪

⋃kn
i=1 β(I) and T̃S = TS is then an [f ]-minimal supertrellis of

T . The region R̃ of T̃ containing the secant Q is repelling since there can be no stable
segment which enters R̃.

(b). Suppose Q is a stable sector. Since Q is not contained in an attracting domain, there must
be an exit segment S for p in the region containing Q. Let [α] be an exact curve from p
to S, and let αi be the initial piece of f i

min[α] for i = 0, . . . , n − 1. Let βi+1 = fmin[αi].
Then since S is an exit segment for p, the initial piece of each [βi] tightens onto [αi]. By
homotoping the αi and βi if necessary, we can ensure that αi is an initial sub-curve of βi,
and is tangent to TU at f i(p). We can therefore find an isotopy ht fixing TU and f(TS)
with ht(0) = id and h1 ◦ f ◦α = β. The trellis T̃ with T̃U = TU ∪

⋃kn
i=1 β(I) and T̃S = TS

is then an [f ]-minimal supertrellis of T .

2

We use these results to construct new branches at essential periodic orbits and trivial branches
of a trellis. These cases are shown in figure 19. These branches are may used to create new
attractors and repellers, as in (b), or to create a new branch dividing a sector into two quadrants
as in (c).

We can similarly ensure that every coquadrant is contained in an attracting/repelling region.

Lemma 3.24 Let ([f ];T ) be a well-formed irreducible trellis mapping class, p ∈ T P and Q a
coquadrant at p. There there is a then there is an [f ]-minimal supertrellis T̃ of T for which Q
is contained in an attracting/repelling region.

The proof follows that of Lemma 3.23(a).

4 Entropy-Minimising Diffeomorphisms

In this section, we show that the entropy bound obtained by the Nielsen entropy is sharp under
the mild assumption that the trellis is well-formed. That is, the topological entropy of the graph
representative g for a trellis type [f ;T ] (which is the same as the Nielsen entropy hniel [f ;T ]) is
the infemum of the topological entropies of diffeomorphisms in the class.

We now give some examples which illustrate the hypotheses of the theorem. The following
example shows that the hypothesis that the trellis be well-formed is necessary.
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Figure 20: Two ill-formed trellis mapping classes. The trellis in (a) has Nielsen entropy log 2,
whereas the trellis in (b), which is the time reversal of that in (a), has Nielsen entropy zero.
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Figure 21: The trellis type [f ;T ] shown in (a) has Nielsen entropy 0, but since T has a transverse
homoclinic point, f has positive topological entropy. The trellis types [f2;T2] and [f5;T5] shown
respectively in (b) and (c) are extensions of T with positive Nielsen entropy.

Example 4.1 The trellis mapping classes in figure 20 are not well-formed. The Nielsen entropy
of the trellis mapping class in (a) is equal to log 2, so any diffeomorphism in the trellis mapping
class must have topological entropy at least log 2. Since the Smale horseshoe map has this
trellis type, the topological entropy of the trellis type is exactly log 2. The trellis mapping class
of figure 20(b) is conjugate to the time-reversal of the trellis mapping class in (a). Since the
topological entropy of a diffeomorphism is the same as that of its inverse, any diffeomorphism
in this trellis mapping class must have topological entropy at least log 2. However, all the edges
of the graph representative are control edges, so the Nielsen entropy is zero.

The above example illustrates that a trellis which is not well-formed may have Nielsen entropy
strictly less than the topological entropy, and may even have different Nielsen entropy from its
time-reversal. The following example shows that even if a trellis mapping class is well-formed,
it is not necessarily true that the Nielsen entropy is realised.

Example 4.2 A trivial example is of a well-formed trellis type for which the Nielsen entropy
equals the topological entropy, but no diffeomorphism realises the entropy bound, is the planar
trellis type with a single transverse homoclinic intersection, as shown in figure 21(a). The
Nielsen entropy of this trellis type is hniel [f ;T ] = 0, but every diffeomorphism with a transverse
homoclinic point has strictly positive topological entropy. It is simple to construct trellis types
with topological entropy arbitrarily close to zero; in figure 21(b) we show the trellis type [f2;T2]
for which hniel [f2;T2] ≈ 0.693, and in figure 21(c) we show the trellis type [f5;T5] for which
hniel [f5;T5] ≈ 0.372.

We now give a nontrivial example.

Example 4.3 A trellis type [f ;T ] for which the Nielsen entropy is not realisable is shown
in figure 22(a). Taking three backward minimal iterates of the segment S eventually yields a
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Figure 22: A trellis for which the Nielsen entropy is not realisable.

segment f−3(S) lying in the domainD containing quadrantQ as shown in figure 22(b). Hence, by
the Lambda lemma, under any diffeomorphism f in the trellis mapping class, f−n(S) approaches
TS as n → ∞, so contains an intersection with TU for some n, even though any minimal
backward iterate of S has no intersections with T U . Similarly, fn(U) must intersect T S for
some n even though any minimal iterate does not. Once one of these extra intersections occurs,
the Nielsen entropy of the resulting trellis type can be shown to increase. Hence the Nielsen
entropy of [f ; T̂ ] is greater than that of [f ;T ] for some f -extension T̂ of T , so htop(f) > hniel [f ;T ].

The realisability of the entropy bound is closely related to the existence of a diffeomorphism
for which every extension is a minimal extension. In the case where this infemum is realised,
we show how to construct a minimal-entropy uniformly-hyperbolic diffeomorphism in the trellis
mapping class. Otherwise, we show, for any ε > 0, how to construct a diffeomorphism whose
entropy is within ε of the Nielsen entropy.

4.1 Existence of entropy minimisers

To prove the existence of a diffeomorphism in a trellis mapping class whose topological entropy
is the Nielsen entropy of the class, we reduce to the case for which every chaotic region is a
rectangle. We then construct such a diffeomorphism for a particularly simple class of trellises.

Theorem 4.4 (Existence of entropy minimisers) Let ([f ];T ) be a trellis mapping class. Suppose
there is a diffeomorphism f̂ isotopic to f relative to T such that every f̂ -extension of T is
minimal. Then there is a uniformly-hyperbolic diffeomorphism f̃ isotopic to f relative to T such
that every extension of T by f̃ is minimal, and htop(f̃) = hniel [f ;T ].

Proof: By Theorem 2.1, any trellis type [f̂ ; T̂ ] with T̂ = (TU , f̂−n(TS)) has the same Nielsen
entropy at [f ;T ]. By Lemma 3.21 we can therefore take a f̂ -extension T1 of T such that every
quadrant of T1 lies in a regular domain, and by irreducibility, we can ensure that every region of
T1 is a topological disc or annulus. By introducing new unstable curves as in Lemma 3.23(a), we
can take an [f1]-minimal supertrellis of T2 of T1 such that every secant of T2 lies in an attracting
or repelling region. We can further ensure that every coquadrant lies in an attracting/repelling
region by Lemma 3.24.

Now suppose there is a chaotic region R of ([f2];T2) which is not a rectangle. Then the
graph representative (g2;G2,W2) of [f2;T2] has a peripheral loop or a valence-n vertex in R
which corresponds to a boundary component or essential periodic orbit which does not shadow
TS . Introducing new stable curves for all such R as in Lemma 3.22 gives an [f2]-minimal
supertrellis T3 for a diffeomorphism f3 for which every chaotic region is a rectangle.
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Figure 23: (a) A non-minimal iterate of a trellis to form a regular quadrant, and (b) the
corresponding graph representative.

Taking an [f3]-minimal iterate T4 of T3 with T4 = (TU
3 , f−1

4 (TS
3 )) gives a trellis mapping

class such that every domain D of ([f4];T4) with boundary in TU
4 ∪ f4(T

S
4 ) containing a chaotic

region is a rectangle. Foliate every domain D containing a chaotic region, foliate D and f(D)
by an unstable foliation FU parallel to TU and a transverse stable foliation FS parallel to T S .
Isotope f4 to obtain a diffeomorphism f̃ which preserves the stable and unstable foliations, and
for which all points of non-chaotic regions are in the basin of a stable or unstable periodic orbit.
Let (g̃; G̃, W̃ ) be a graph representative of [f4;T4], and π : CT4 −→ (G̃, W̃ ) be a deformation-
retract which collapses each leaf of FS onto a point of G̃. Then π ◦ f̃ = g̃ ◦ π on every chaotic
region R, so htop(f̃) = htop(g̃) = hniel [f ;T ]. Further, it is clear that every f̃ -extension of T4 is
minimal, so every f -extension of T is minimal. 2

4.2 Approximate entropy minimising diffeomorphisms

We now show that, for any ε > 0, we can find a diffeomorphism f̂ isotopic to f relative to T which
has entropy less than htop [f ;T ] + ε. We first consider how to perform non-minimal extensions
without increasing the Nielsen entropy above hniel [f ;T ] + ε. To control the entropy bound, we
need to consider the graph representative, which introduces some technical difficulties. To avoid
having to deal directly with graph representative in the sequel, we prove a result, Lemma 4.5,
which applies directly to trellis mapping classes.

Our final goal is to to construct a trellis mapping class which satisfies the conditions of
Theorem 4.4. To do this, we may need to introduce new periodic points to the trellis to create
attracting and repelling regions. We then iterate curves bounding an attractor or repeller into
regular domains, and finally take non-minimal iterates to move bigon boundaries into attractors
and repellers.

Lemma 4.5 Let ([f ];T ) be a trellis mapping class and Q a period-n quadrant of ([f ];T ). Let S
be the segment of T S with endpoint qu on the Q-side of TU (Q), and U be the segment of TU with
endpoint qs on the Q-side of T S(Q). Then for any ε > 0 there is a minimal stable extension
([f̂ ]; T̂ ) such that hniel [f̂ ; T̂ ] < hniel [f ;T ] + ε, and an integer k such that f̂−kn(S) ⊂ T̂S and
intersects U at a point r̂ such that {p, f−kn(qu), qs, r̂} are the vertices of a regular domain for
Q.

Proof: Choose λ and λε such that hniel [f ;T ] < λ < λε < hniel [f ;T ] + ε. Let (g;G,W ) be the
graph representative of [f ;T ] and l be a length function on G such that for all edges e of G,
l(g(e)) < λl(e). Let zQ be the control edge crossing T S [p, qs], and z0 be the control edge crossing
S. Let α be an edge-path starting at zQ and finishing at the first vertex v between zQ and z0,
and let β be the edge-path from v to the end of z0.

Since l(g(α))/λε < l(g(α))/λ 6 l(α), there exists k such that l(g(α))/λε + 2l(β)/λnk
ε <

l(α). Let f̃ be a diffeomorphism such that f̃1−kn(TS) is a minimal iterate of T S , and set T̃ =
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Figure 24: (a) A quadrant Q in a regular domain D, and (b) the same quadrant contained in a
region R which is a regular domain with an attractor A across T S [q̃u, r̃] and a repeller B across
TU [q̃s, r̃].

(TU , f̃1−kn(TS)). Then [f̃ ; T̃ ] has a graph representative (g̃; G̃, W̃ ) for which l extends to a length
function with l(βi) = l(β)/λi

ε for the ith backward iterate βi of β. Let f̂ be a diffeomorphism
which is isotopic to f̃ relative to T̃ , for which f̂−nk(S) intersects U transversely at two points,
including a point r̂, but otherwise has minimal intersections with T U , as shown in figure 23.
Let T̂ = (TU , f̂−nk(TS)), and (ĝ; Ĝ, Ŵ ) be the graph representative of [f̂ ; T̂ ]. The graph map
ĝ maps α to g(α) and twice over βnk−1, with total length l(ĝ(α)) = l(g(α)) + 2l(β)/λnk−1

ε , so
l(ĝ(α)) < λεl(α) as required. Since the image of all other edges is unchanged, the growth rate
of l under ĝ is less than λε, so hniel [f̂ , T̂ ] = htop(ĝ) < log λε. 2

Before proving the main theorem we show how to ensure that every quadrant Q is contained
in a regular domain whose opposite sides bound attractors or repellers.

Lemma 4.6 Let ([f ];T ) be a transitive trellis mapping class. Then there is a minimal supertrel-
lis ([f̃ ]; T̃ ) of ([f ];T ) such that every quadrant Q is contained in a region R such that R is a
regular domain for Q such that T̃S [q̃u, r̃] is a boundary arc of a stable domain and T̃U [q̃s, r̃] is
the boundary of an unstable region.

Proof: Let P be an essential periodic orbit of ([f ];T ) which does not shadow T P . Construct an
[f ]-minimal supertrellis T1 for a diffeomorphism f1 as in Lemma 3.22 containing P in a stable
region. Since ([f ];T ) is transitive, for any regular domain D, the homotopy class [αD] must
have some minimal iterate fk

min[αD] intersecting the new stable curves of T1. Taking T2 to be
the trellis formed by taking [f1]-minimal iterates of T S

1 \ T
S , we can ensure that every regular

domain D is crosses by curves of T S
2 . Then every quadrant Q is contained in a region R of T2

such that R is a regular domain for Q and T S
2 [qu, r] is a boundary arc of a stable domain, as

shown in figure 24. A supertrellis T3 such that every quadrant Q is contained in a region R of
T2 such that R is a regular domain for Q and TU

3 [qs, r] is a boundary arc of an unstable domain
can be constructed in a similar way. 2

Theorem 4.7 (Existence of approximate entropy minimisers) Let ([f ];T ) be a well-formed trel-
lis mapping class. Then for every ε > 0, there exists a diffeomorphism f̂ ∈ [f ]T such that
htop(f̂) < hniel [f ;T ] + ε.

Proof: We repeatedly construct trellis mapping classes ([fi];Ti) where Ti+1 is a supertrellis of Ti

and fi+1 is isotopic to fi relative to Ti, at each stage ensuring that hniel [fi;Ti] < hniel [f ;T ]+ε =
log λε. Without loss of generality we assume ([f ];T ) is irreducible, since if ([f ];T ) is reducible,
we can consider irreducible components. Take ([f0];T0) = ([f ], T ). By irreducibility, there

24



p

Q B

Figure 25: Backward iterates of B give an inner bigon in a repelling domain.

exists a minimal extension T1 of T0 such that for every pair of nontrivial branches T U
1 [pu, bu]

and TS
1 [ps, bs], there are points pu = p0, p1, . . . , pn = ps such that TU

1 (pu, bu] ∩ TS
1 (p1) 6= ∅,

TU
1 (pi) ∩ T

S
1 (pi+1) 6= ∅ for 1 6 i < n− 1 and TU

1 (pn−1) ∩ T
S
1 (ps, bs] 6= ∅. By Lemma 4.5, there

exists f2 ∈ [f1]T1
and an f2-extension T2 of T1 such that every quadrant of T2 is contained in a

regular rectangular region.
We next construct a non-minimal f3-extension T3 of T2 such that every nontrivial branch of

TU
3 intersects every nontrivial branch of T S

3 as follows: Suppose QU , QS and Q are quadrants
such that TU

3 (QU ) intersects T S
3 (Q) and TU

3 (Q) intersects T S
3 (QS). Then can take minimal

iterates of TU
3 (QU ) and TS

3 (QS) until the closest intersections to the periodic point p at Q along
TS

3 (Q) and TU
3 (Q) lie on TU (QU ) and TS(QS), respectively. Then an application of Lemma 4.5

shows that there is a non-minimal extension such that T U (QU ) ∩ T
S(QS) 6= ∅. By considering

all pairs of quadrants QU and QS , we can ensure that every nontrivial branch of T U
3 intersects

every nontrivial branch of T S
3 .

Now construct a non-minimal f4-extension T4 of T3 such that there is an alpha-chain linking
any quadrant QU of T4 to any other quadrant QS . Since T

S
3 (QS) intersects T

U
3 (QU ), by taking

minimal backward iterates of T S
3 (QS) we can ensure that T S(QS) crosses U(QU ). Then by

Lemma 4.5, there is a non-minimal extension such that the branch T S(QS) crosses the regular
region containing QU . Similarly, we can ensure TU (QU ) crosses the regular region containing
QS . A further application of Lemma 4.5 gives a non-minimal extension with an alpha-chain
linking QU to QS . Repeating this construction for all quadrants gives the required trellis T4.

Let T5 be a minimal supertrellis of T4 such that all secants and coquadrants of T4 are
contained in a non-chaotic region, as given by Lemma 3.23(a) and Lemma 3.24. If ([f5];T5) has
no attractors or no repellers, take a further minimal supertrellis T6, with at least one attractor
and one repeller, as given by Lemma 3.22. Since ([f6];T6) is transitive, we can take a minimal
extension T7 by iterating the stable and unstable curves bounding stable and unstable regions
such that all quadrants of T7 are contained in a regular region with the opposite stable side
bounding an attracting domain, and the opposite unstable side bounding a repelling domain.

Now, for any inner bigon B such that the stable boundary ∂B ∩ T S is an almost wandering
segment, we take backward iterates of ∂B ∩ T S until f−k(B) is contained in a regular domain
with stable and unstable regions across its opposite sides. By Lemma 4.5, we can take further
backwards iterates until f−n)(B) contains a single bigon in an unstable domain, as shown in
figure 25. Applying this procedure to all bigons gives a trellis mapping class ([f8];T8).

Finally, we take a minimal supertrellis T9 such that every chaotic region is a rectangle by
introducing new stable curves as in Lemma 3.22. Then by Theorem 4.4 there is a uniformly-
hyperbolic diffeomorphism f̂ ∈ [f9]T9

, and hence in [f ]T such that htop(f̂) = hniel [f9;T9] <
hniel [f ;T ] + ε as required. 2

We now prove the existence of pseudo-Anosov map which approximate the Nielsen entropy.
The condition on attracting and repelling domains is to ensure that the trellis mapping class
contains a pseudo-Anosov map, since pseudo-Anosov maps have no attracting or repelling do-
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Figure 26: The domain with vertices q0 and q1 must have periodic orbits in the rectangles R0

and R1.

mains. The strategy is to create the periodic orbits which will give the one-prong singularities of
the pseudo-Anosov map. Many of the steps of the proof mimic those the proof of Theorem 4.7.

Theorem 4.8 (Existence of pseudo-Anosov representatives) Let ([f ];T ) be a trellis mapping
class with no attractors or repellers. Then for any ε > 0 there exists a pseudo-Anosov diffeo-
morphism f̂ ∈ [f ]T such that htop(f̂) < htop [f ;T ] + ε.

Proof: We repeatedly construct trellis mapping classes ([fi];Ti) where Ti+1 is a supertrellis of
Ti and fi+1 is isotopic to fi relative to Ti.

If T has a coquadrant, take an extension T1 such that the two trivial branches inside the
coquadrant intersect in a single transverse homoclinic point. This does not affect the Nielsen
entropy. If T has any other trivial branches, take a minimal extension T2 such that these branches
have an intersection point, which is possible by Lemma 3.23(b) since T has no attracting or
repelling regions. As in the proof of Theorem 4.7, take an extension T3 such that every branch
of T3 intersects every other. Further, we can ensure that every branch intersects every other with
both orientations by constructing new intersections as adjacent pairs or triples with alternating
orientations. Take a further extension T4 such that ([f4];T4) is transitive.

Let B be an inner bigon of T4, as shown in figure 26(a). By Lemma 4.5, we can find
a stable extension such that f−n(∂B ∩ TS) crosses the regular region D containing QU for
some n. Further, by removing intersections by a pruning isotopy if necessary, we can ensure
that f−n(∂B ∩ TS) crosses D twice and gives a new inner bigon B̂, as shown in figure 26(b). A
further application of Lemma 4.5 shows that we can find a stable extension T4 such that ∂B̂∩TU

crosses some regular domain, as shown in figure 26(c). Since the regions R are mapped over by
[αQU

] and map over [αQS
], they must contain a periodic orbit, since T is transitive. Applying

this construction for every inner bigon of ([f4];T4) gives a non-minimal extension T5 such that
every bigon of T4 is a domain of T5 containing an essential periodic orbit of ([f5];T5).

Let ([f6];T6) be the trellis mapping class obtained by puncturing at a periodic orbit in

every inner bigon of T 4 to give a surface M̂ . Then hniel [f6;T6] = hniel [f5;T5]. Since T4 is a
subtrellis of T6, we can take a trellis mapping class ([f7];T7) = ([f6];T4) in the surface M6.

Since every inner bigon of T4 contains component of ∂M̂ , the trellis mapping class ([f7];T7) has
no inner bigons. The graph representative (g7;G7,W7) is locally injective except at cusps, so
is efficient and hence is a train-track map for a pseudo-Anosov diffeomorphism f̂ ∈ ([f7];T7).
Then htop(f̂) = hniel [f7;T7] 6 hniel [f6;T6] < hniel [f ;T ] + ε as required. 2

4.3 Non-existence of entropy minimisers

In this section we show that if an irreducible trellis type has an entropy minimiser, then removing
intersections results in a trellis type with strictly smaller Nielsen entropy. We first prove that a
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Figure 27: Change in trellis and graph at a homoclinic bifurcation.

transitive trellis has a transitive graph representative.

Lemma 4.9 Let ([f ];T ) be an transitive trellis mapping class. Then the graph representative
(g;G,W ) of ([f ];T ) has a single transitive component with positive topological entropy.

Proof: Consider (G,W ) to be embedded as a homotopy retract of CT For every homotopy class
[α] in CT with endpoints in T S , let α be the representative curve in G. Let G =

⋂
∞

n=0 g
n(G) be

the essential subgraph of G, and let e be any expanding edge of G. By irreducibility, there is a
quadrant Q contained in a regular domain D such that gn(e) tightens to [αD] for some n.

We now consider preimages of edges. Again, let e be an expanding edge of G. There
exists a tight curve β0 in G̃ with endpoints in W such that β0 is homotopic to a subinterval
of a branch TU [p, b]. We then find a curve β1 in G̃ homotopic to a subinterval of a branch at
f−1(p). Proceeding recursively gives an edge-path βn = αD where βi is a sub-path of g(βi+1)
for 0 6 i < n. Therefore, there exists a quadrant Q contained in a regular domain D and an
integer n such that gn(αD) ⊃ e.

Now if QU and QS are any two regular quadrants, and are contained in regular domains DU

and DS , respectively, there exists n such that gn(αDU
) contains a sub-curve αDS

. Since (f ;T ) is
irreducible, we can find N such that for any two quadrants and any n > N , the iterate gn(αQU

)
contains a sub-path αQS

. Therefore, any such curve α generates the same graph component
under iteration.

Combining these results shows that there exists N such that if e1 and e2 are any two edges
of G and n > N , then e2 ⊂ gn(e1). 2

The following result shows that any isotopy removing intersections results in a trellis mapping
class with strictly smaller Nielsen entropy.

Theorem 4.10 Let ([f ];T ) be a well-formed irreducible trellis mapping class, and suppose f is
a uniformly-hyperbolic diffeomorphism such that htop(f) = hniel [f ;T ]. Then if ([f ];T ) is a trellis
mapping class which is obtained from ([f ];T ) by a pruning isotopy, then hniel [f ;T ] < hniel [f ;T ].

Proof: By taking an f -supertrellis T1 of T , we can ensure that every quadrant is regular, and
contained in a rectangular region, that ([f ];T1) is transitive, and that that every inner bigon of
([f ];T1) is contained in a larger domain with the topology of figure 27(a). Clearly, hniel [f ;T ] 6

hniel [f ;T1] 6 htop(f), and hence we have hniel [f ;T1] = htop(f). Further, if (g1;G1,W1) is the
graph representative of ([f ];T1), then (G1,W1) has free edges a0 and a2 and control edges z0

and z2 as shown. Since ([f ];T1) is transitive, a0 and a1 lie in the transitive component of g1

with positive entropy, and there is an edge e mapping g1(e) = . . . a0z0z̄2ā2, . . ..
Now consider the effect of a pruning isotopy yielding a trellis mapping class ([f2];T2) with

graph representative (g2;G2,W2) by removing one pair of orbits on the same inner bigons. The
resulting trellis and graph locally have the topology of the right of figure 27(b). The control
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edges z0 and z2 are folded to give control edge z1, and the edges a0 and a2 are partially folded
together yielding a new edge a1. The image of e is tightened from a path . . . a0ā1z1z̄1a1ā2 . . .
to g2(e) = . . . a0ā2 . . ., which means that htop(g2) < htop(g1). Hence the entropy of the graph
representative of ([f2];T2) is less than that of ([f ];T1), so hniel [f2;T2] < hniel [f ;T1] = hniel [f ;T ].
Since we can then prune ([f2];T2) to obtain ([f ];T ), we have hniel [f ;T ] 6 hniel [f2;T2], hence
hniel [f ;T ] < hniel [f ;T ] as required. 2

We use this to prove that the sufficient condition given for the existence of entropy minimisers
in Theorem 4.4 is necessary.

Theorem 4.11 (Non-existence of entropy minimisers) Let ([f ];T ) be an irreducible trellis map-
ping class. Suppose that for every diffeomorphism f̂ isotopic to f relative to T there is a f̂ -
extension of T which is not minimal. Then there does not exist a diffeomorphism isotopic to f
relative to T whose topological entropy equals hniel [f ;T ].

Proof: Suppose there is an f -extension T1 of T which is not minimal. Let T2 be a transitive
f -extension of T1, and T3 be a further extension such that every non-wandering segment of T
crosses a regular domain of T3. Then we have entropy bound htop(f) > hniel [f ;T3].

Take T4 to be an f4-supertrellis of ([f ];T3) which is [f ]-minimal and for which the opposite
sides of every regular region bound a stable or unstable region. Then every nonwandering
segment of T enters a stable or unstable region of T4 under iterates of f4. Isotope to remove
intersections of T4 not in T1 to obtain a trellis mapping class ([f5];T5) such that T5 is a supertrellis
of T1 and ([f5];T5) satisfies the conditions of Theorem 4.4. Then hniel [f3;T3] = hniel [f4;T4] >

hniel [f5;T5], but by Theorem 4.10, hniel ([f5];T5) > hniel [f ;T ]. Combining these inequalities we
have htop(f) > hniel [f5;T5] > hniel [f ;T ] as required. 2

The results of this section show that many fundamental properties of an irreducible trellis
type [f ;T ] depends on whether there is a diffeomorphism isotopic to f relative to T for which
htop(f̃) = hniel [f ;T ]. If such a diffeomorphism exists, then the entropy of the trellis type is
carried in a uniformly hyperbolic diffeomorphism, but is fragile in the sense that any pruning
will reduce the Nielsen entropy, and any diffeomorphism f̂ for which some extension is non-
minimal must have strictly greater topological entropy. If no such diffeomorphism exists, every
diffeomorphism in the trellis type has an extension which is non-minimal, but pruning this
extension may give a trellis type for which the entropy is still greater than the Nielsen entropy
of [f ;T ].
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