3,500 research outputs found

    Membrane morphology induced by anisotropic proteins

    Get PDF
    There are a great many proteins that localize to and collectively generate curvature in biological fluid membranes. We study changes in the topology of fluid membranes due to the presence of highly anisotropic, curvature-inducing proteins. Generically, we find a surprisingly rich phase diagram with phases of both positive and negative Gaussian curvature. As a concrete example modeled on experiments, we find that a lamellar phase in a negative Gaussian curvature regime exhibits a propensity to form screw dislocations of definite burgers scalar but of both chirality. The induced curvature depends strongly on the membrane rigidity, suggesting membrane composition can be a factor regulating membrane sculpting to to curvature-inducing proteins.Comment: 4 pages, 4 figure

    Boundary conditions in the Dirac approach to graphene devices

    Get PDF
    We study a family of local boundary conditions for the Dirac problem corresponding to the continuum limit of graphene, both for nanoribbons and nanodots. We show that, among the members of such family, MIT bag boundary conditions are the ones which are in closest agreement with available experiments. For nanotubes of arbitrary chirality satisfying these last boundary conditions, we evaluate the Casimir energy via zeta function regularization, in such a way that the limit of nanoribbons is clearly determined.Comment: 10 pages, no figure. Section on Casimir energy adde

    Self-Assembly on a Cylinder: A Model System for Understanding the Constraint of Commensurability

    Full text link
    A crystal lattice, when confined to the surface of a cylinder, must have a periodic structure that is commensurate with the cylinder circumference. This constraint can frustrate the system, leading to oblique crystal lattices or to structures with a chiral seam known as a "line slip" phase, neither of which are stable for isotropic particles in equilibrium on flat surfaces. In this study, we use molecular dynamics simulations to find the steady-state structure of spherical particles with short-range repulsion and long-range attraction far below the melting temperature. We vary the range of attraction using the Lennard-Jones and Morse potentials and find that a shorter-range attraction favors the line-slip. We develop a simple model based only on geometry and bond energy to predict when the crystal or line-slip phases should appear, and find reasonable agreement with the simulations. The simplicity of this model allows us to understand the influence of the commensurability constraint, an understanding that might be extended into the more general problem of self-assembling particles in strongly confined spaces.Comment: 12 pages, 9 figures. Submitted for publication, 201

    Zeroes of combinations of Bessel functions and mean charge of graphene nanodots

    Full text link
    We establish some properties of the zeroes of sums and differences of contiguous Bessel functions of the first kind. As a byproduct, we also prove that the zeroes of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeroes of Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry-Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss in detail its dependence on the gate (chemical) potential.Comment: vesrion accepted to Theoretical and Mathematical Physics, 18 pages, 1 figur
    • …
    corecore