1,362 research outputs found

    "Cayas" un nuevo asentamiento celtibérico en Malón (Aragón, España)

    Get PDF
    En el presente trabajo se presenta el estudio de un pequeño asentamiento rural celtibérico inédito documentado mediante prospección arqueológica en el término municipal de Malón perteneciente a la Comunidad Autónoma de Aragón. La cultura material estudiada y la tipología del asentamiento indican que se trata de una pequeña unidad de producción rural tipo granja vinculada al modelo social de las ciudades-estado celtibéricas, lo que nos lleva a proponer una cronología para este asentamiento entre finales del siglo III a.C. y la primera mitad del siglo II a.C.In the present work we present the study of a small unpublished Celtiberian rural settlement documented by archaeological survey in the municipality of Malón, belonging to the Autonomous Community of Aragon. The material culture studied and the settlement typology indicate that it is a small unit of rural farm production linked to the social model of Celtiberian city-states, which leads us to propose a chronology for this settlement between the end of the third century BC. And the first half of the second century BC

    Trigonometry of 'complex Hermitian' type homogeneous symmetric spaces

    Full text link
    This paper contains a thorough study of the trigonometry of the homogeneous symmetric spaces in the Cayley-Klein-Dickson family of spaces of 'complex Hermitian' type and rank-one. The complex Hermitian elliptic CP^N and hyperbolic CH^N spaces, their analogues with indefinite Hermitian metric and some non-compact symmetric spaces associated to SL(N+1,R) are the generic members in this family. The method encapsulates trigonometry for this whole family of spaces into a single "basic trigonometric group equation", and has 'universality' and '(self)-duality' as its distinctive traits. All previously known results on the trigonometry of CP^N and CH^N follow as particular cases of our general equations. The physical Quantum Space of States of any quantum system belongs, as the complex Hermitian space member, to this parametrised family; hence its trigonometry appears as a rather particular case of the equations we obtain.Comment: 46 pages, LaTe

    Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry

    Full text link
    A new method to obtain trigonometry for the real spaces of constant curvature and metric of any (even degenerate) signature is presented. The method encapsulates trigonometry for all these spaces into a single basic trigonometric group equation. This brings to its logical end the idea of an absolute trigonometry, and provides equations which hold true for the nine two-dimensional spaces of constant curvature and any signature. This family of spaces includes both relativistic and non-relativistic homogeneous spacetimes; therefore a complete discussion of trigonometry in the six de Sitter, minkowskian, Newton--Hooke and galilean spacetimes follow as particular instances of the general approach. Any equation previously known for the three classical riemannian spaces also has a version for the remaining six spacetimes; in most cases these equations are new. Distinctive traits of the method are universality and self-duality: every equation is meaningful for the nine spaces at once, and displays explicitly invariance under a duality transformation relating the nine spaces. The derivation of the single basic trigonometric equation at group level, its translation to a set of equations (cosine, sine and dual cosine laws) and the natural apparition of angular and lateral excesses, area and coarea are explicitly discussed in detail. The exposition also aims to introduce the main ideas of this direct group theoretical way to trigonometry, and may well provide a path to systematically study trigonometry for any homogeneous symmetric space.Comment: 51 pages, LaTe

    Non-standard quantum so(3,2) and its contractions

    Full text link
    A full (triangular) quantum deformation of so(3,2) is presented by considering this algebra as the conformal algebra of the 2+1 dimensional Minkowskian spacetime. Non-relativistic contractions are analysed and used to obtain quantum Hopf structures for the conformal algebras of the 2+1 Galilean and Carroll spacetimes. Relations between the latter and the null-plane quantum Poincar\'e algebra are studied.Comment: 9 pages, LaTe
    corecore