308 research outputs found

    A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Get PDF
    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division

    Anchored phosphatases modulate glucose homeostasis.

    Get PDF
    Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca(2+) and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca(2+) currents, and attenuates cytoplasmic accumulation of Ca(2+) and cAMP in β-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity

    IP3R-driven increases in mitochondrial Ca2+ promote neuronal death in NPC disease

    Get PDF
    Ca2+ is the most ubiquitous second messenger in neurons whose spatial and temporal elevations are tightly controlled to initiate and orchestrate diverse intracellular signaling cascades. Numerous neuropathologies result from mutations or alterations in Ca2+ handling proteins; thus, elucidating molecular pathways that shape Ca2+ signaling is imperative. Here, we report that loss-of-function, knockout, or neurodegenerative disease-causing mutations in the lysosomal cholesterol transporter, Niemann-Pick Type C1 (NPC1), initiate a damaging signaling cascade that alters the expression and nanoscale distribution of IP3R type 1 (IP3R1) in endoplasmic reticulum membranes. These alterations detrimentally increase Gq-protein coupled receptor-stimulated Ca2+ release and spontaneous IP3R1 Ca2+ activity, leading to mitochondrial Ca2+ cytotoxicity. Mechanistically, we find that SREBP-dependent increases in Presenilin 1 (PS1) underlie functional and expressional changes in IP3R1. Accordingly, expression of PS1 mutants recapitulate, while PS1 knockout abrogates Ca2+ phenotypes. These data present a signaling axis that links the NPC1 lysosomal cholesterol transporter to the damaging redistribution and activity of IP3R1 that precipitates cell death in NPC1 disease and suggests that NPC1 is a nanostructural disease

    CD43 signals induce Type One lineage commitment of human CD4+ T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The activation and effector phenotype of T cells depend on the strength of the interaction of the TcR with its cognate antigen and additional signals provided by cytokines and by co-receptors. Lymphocytes sense both the presence of an antigen and also clues from antigen-presenting cells, which dictate the requisite response. CD43 is one of the most abundant molecules on the surface of T cells; it mediates its own signalling events and cooperates with those mediated by the T cell receptor in T cell priming. We have examined the role of CD43 signals on the effector phenotype of adult CD4<sup>+ </sup>and CD8<sup>+ </sup>human T cells, both alone and in the presence of signals from the TcR.</p> <p>Results</p> <p>CD43 signals direct the expression of IFNγ in human T cells. In freshly isolated CD4<sup>+ </sup>T cells, CD43 signals potentiated expression of the IFNγ gene induced by TcR activation; this was not seen in CD8<sup>+ </sup>T cells. In effector cells, CD43 signals alone induced the expression of the IFNγ gene in CD4<sup>+ </sup>T cells and to a lesser extent in CD8<sup>+ </sup>cells. The combined signals from CD43 and the TcR increased the transcription of the T-bet gene in CD4<sup>+ </sup>T cells and inhibited the transcription of the GATA-3 gene in both populations of T cells, thus predisposing CD4<sup>+ </sup>T cells to commitment to the T1 lineage. In support of this, CD43 signals induced a transient membrane expression of the high-affinity chains of the receptors for IL-12 and IFNγ in CD4<sup>+ </sup>T cells. CD43 and TcR signals also cooperated with those of IL-12 in the induction of IFNγ expression. Moreover, CD43 signals induced the co-clustering of IFNγR and the TcR and cooperated with TcR and IL-12 signals, triggering a co-capping of both receptors in CD4<sup>+ </sup>populations, a phenomenon that has been associated with a T1 commitment.</p> <p>Conclusion</p> <p>Our results suggest a key role for CD43 signals in the differentiation of human CD4<sup>+ </sup>T cells into a T1 pattern.</p

    Performance of Young Nellore Bulls Grazing Marandu Grass Pasture at Different Heights

    Get PDF
    Brazil is one of the largest beef cattle producers in the world with approximately 200 M head. The Industry relies predominantly on warm-season grass pastures, with approximately 90% of animals finished on pastures. One of the main factors for the intensification of animal production systems based on pasture is appropriate management. Adjustment of stocking rate to maintain optimum forage allowance is essential. Studies on forage allowance have resulted in a better understanding of the response of forage crops and animals to changes in grazing intensity. The purpose of this study was to evaluate management strategies for beef cattle systems grazed at different heights (15, 25 and 35 cm) in Brachiaria brizantha cv. Marandu in terms of pasture production and animal performance
    • …
    corecore