83 research outputs found

    Multiclonal spread of Klebsiella pneumoniae across hospitals in Khartoum, Sudan

    Get PDF
    Objectives Multidrug-resistant (MDR) Klebsiella pneumoniae is increasing worldwide with poorly characterised epidemiology in many parts of the world, particularly in Africa. This study aimed to investigate the molecular epidemiology of K. pneumoniae, to identify the diversity of sequence types (ST), and to detect carbapenem resistance genes in major regional hospitals in Khartoum, Sudan. Methods Klebsiella pneumoniae isolates (n = 117) were cultured from four hospitals in Khartoum, from April 2015 to October 2016. The isolates were characterised by sequencing of 16S-23S rDNA internal transcribed spacer (ITS) region. Molecular epidemiology was determined by multilocus sequence typing (MLST), and analysed by maximum likelihood phylogeny (PhyML). Antimicrobial susceptibility was determined by disk diffusion. Isolates phenotypically resistant to carbapenem were screened for carbapenemase genes: blaNDM, blaOXA48, blaIMP, blaVIM and blaGES by PCR. Results ITS sequencing confirmed the 117 isolates as K. pneumoniae. MLST revealed 52 different STs grouped in four distinct clusters by PhyML. All isolates were MDR, and carbapenemase-producing K. pneumoniae (CP-KP) isolates accounted for 44/117 (37.6%) mostly harbouring blaNDM (28/44) and blaOXA-48 (7/44), with several isolates harbouring multiple genes. Conclusion MDR and CP-KP K. pneumoniae is widespread in Khartoum hospitals, with a diverse population of 52 STs clustering in four major lineages. There is an urgent need for systematic epidemiological studies of drug-resistant infections across all healthcare institutions in Sudan to inform local infection prevention and control strategies

    A Novel Alkaliphilic Streptomyces Inhibits ESKAPE Pathogens

    Get PDF
    In an effort to stem the rising tide of multi-resistant bacteria, researchers have turned to niche environments in the hope of discovering new varieties of antibiotics. We investigated an ethnopharmacological (cure) from an alkaline/radon soil in the area of Boho, in the Fermanagh Scarplands (N. Ireland) for the presence of Streptomyces, a well-known producer of antibiotics. From this soil we isolated a novel (closest relative 57% of genome relatedness) Streptomyces sp. capable of growth at high alkaline pH (10.5) and tolerant of gamma radiation to 4 kGy. Genomic sequencing identified many alkaline tolerance (antiporter/multi-resistance) genes compared to S. coelicolor M145 (at 3:1), hence we designated the strain Streptomyces sp. myrophorea, isolate McG1, from the Greek, myro (fragrance) and phorea (porter/carrier). In vitro tests demonstrated the ability of the Streptomyces sp. myrophorea, isolate McG1 to inhibit the growth of many strains of ESKAPE pathogens; most notably carbapenem-resistant Acinetobacter baumannii (a critical pathogen on the WHO priority list of antibiotic-resistant bacteria), vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus (both listed as high priority pathogens). Further in silico prediction of antimicrobial potential of Streptomyces sp. myrophorea, isolate McG1 by anti-SMASH and RAST software identified many secondary metabolite and toxicity resistance gene clusters (45 and 27, respectively) as well as many antibiotic resistance genes potentially related to antibiotic production. Follow-up in vitro tests show that the Streptomyces sp. myrophorea, isolate McG1 was resistant to 28 out of 36 clinical antibiotics. Although not a comprehensive analysis, we think that some of the Boho soils’ reputed curative properties may be linked to the ability of Streptomyces sp. myrophorea, isolate McG1 to inhibit ESKAPE pathogens. More importantly, further analysis may elucidate other key components that could alleviate the tide of multi-resistant nosocomial infections

    Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens

    No full text
    The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens

    Quorum Sensing in ESKAPE Bugs: A Target for Combating Antimicrobial Resistance and Bacterial Virulence

    No full text
    A clique of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) bugs is the utmost causative agent responsible for multidrug resistance in hospital settings. These microorganisms employ a type of cell–cell communication termed ‘quorum sensing (QS) system’ to mediate population density and synchronously control the genes that modulate drug resistance and pathogenic behaviors. In this article, we focused on the present understanding of the prevailing QS system in ESKAPE pathogens. Basically, the QS component consisted of an autoinducer synthase, a ligand (e.g., acyl homoserine lactones/peptide hormones), and a transcriptional regulator. QS mediated expression of the bacterial capsule, iron acquisition, adherence factors, synthesis of lipopolysaccharide, poly-N-acetylglucosamine (PNAG) biosynthesis, motility, as well as biofilm development allow bacteria to promote an antimicrobial-resistant population that can escape the action of traditional drugs and endorse a divergent virulence production. The increasing prevalence of these harmful threats to infection control, as well as the urgent need for effective antimicrobial strategies to combat them, serve to highlight the important anti-QS strategies developed to address the difficulty of treating microorganisms

    Antimicrobial Resistance and Virulence of Non-Typhoidal Salmonella from Retail Foods Marketed in Bangkok, Thailand

    No full text
    Nontyphoidal-Salmonella bacteria cause foodborne gastroenteritis that may lead to fatal bacteremia, osteomyelitis, and meningitis if not treated properly. The emergence of multidrug-resistant Salmonella strains is a global public health threat. Regular monitoring of genotypes and phenotypes of Salmonella isolated from humans, animals, foods, and environments is mandatory for effective reduction and control of this food-borne pathogen. In this study, antimicrobial-resistant and virulent genotypes and phenotypes of Salmonella isolated from retail food samples in Bangkok, Thailand, were investigated. From 252 raw food samples, 58 Salmonella strains that belonged only to serotype Enteritidis were isolated. Disc diffusion method showed that all isolates were still sensitive to amikacin and carbapenems. More than 30% of the isolates were resistant to ampicillin, tetracycline, and ciprofloxacin. Twenty isolates resist at least three antibiotic classes. Minimum inhibitory concentration tests showed that 12.07% of the isolates produced extended-spectrum β-Lactamase. Polymerase chain reaction indicated that 32.76, 81.03, 39.66, and 5.17% of the isolates carried blaTEM-1, tetA, sul2, and dfrA7, respectively. All isolates were positive for invasion-associated genes. Effective prevention and control of Salmonella (as well as other food-borne pathogens) is possible by increasing public awareness and applying food hygienic practices. Active and well harmonised “One Health” co-operation is required to effectively control food-borne zoonosis

    Human Single-Chain Antibodies That Neutralize Elastolytic Activity of Pseudomonas aeruginosa LasB

    No full text
    LasB (elastase/pseudolysin) is an injurious zinc-metalloprotease secreted by the infecting Pseudomonas aeruginosa. LasB is recognized as the bacterial key virulence factor for establishment of successful infection, acquisition of nutrients, dissemination, tissue invasion, and immune modulation and evasion. LasB digests a variety of the host tissue proteins, extracellular matrices, as well as components of both innate and adaptive immune systems, including immunoglobulins, complement proteins, and cytokines. Thus, this enzyme is an attractive target for disarming the P. aeruginosa. This study generated human single-chain antibodies (HuscFvs) that can neutralize the elastolytic activity of native LasB by using phage display technology. Gene sequences coding HuscFvs (huscfvs) isolated from HuscFv-displaying phage clones that bound to enzymatically active LasB were sub-cloned to expression plasmids for large scale production of the recombinant HuscFvs by the huscfv-plasmid transformed Escherichia coli. HuscFvs of two transformed E. coli clones, i.e., HuscFv-N42 and HuscFv-N45, neutralized the LasB elastolytic activities in vitro. Computer simulation by homology modeling and molecular docking demonstrated that antibodies presumptively formed contact interfaces with the LasB residues critical for the catalytic activity. Although the LasB neutralizing mechanisms await elucidation by laboratory experiments, the HuscFvs should be tested further towards the clinical application as a novel adjunctive therapeutics to mitigate severity of the diseases caused by P. aeruginosa

    Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand

    No full text
    Subclinical mastitis is a persistent problem in dairy farms worldwide. Environmental Escherichia coli is the bacterium predominantly responsible for this condition. In Thailand, subclinical mastitis in dairy cows is usually treated with various antibiotics, which could lead to antibiotic resistance in bacteria. E. coli is also a reservoir of many antibiotic resistance genes, which can be conveyed to other bacteria. In this study, the presence of E. coli in milk and water samples was reported, among which enteropathogenic E. coli was predominant, followed by enteroaggregative E. coli and enterohemorrhagic E. coli, which was found only in milk samples. Twenty-one patterns of antibiotic resistance were identified in this study. Ampicillin- and carbenicillin-resistant E. coli was the most common among the bacterial isolates from water samples. Meanwhile, resistance to ampicillin, carbenicillin, and sulfamethoxazole-trimethoprim was the pattern found most commonly in the E. coli from milk samples. Notably, only the E. coli from water samples possessed ESBL phenotype and carried antibiotic resistance genes, blaTEM and blaCMY-2. This indicates that pathogenic E. coli in dairy farms is also exposed to antibiotics and could potentially transfer these genes to other pathogenic bacteria under certain conditions
    corecore