16 research outputs found

    Public Talks and Science Listens: A Community-Based Participatory Approach to Characterizing Environmental Health Risk Perceptions and Assessing Recovery Needs in the Wake of Hurricanes Katrina and Rita

    Get PDF
    In response to the human health threats stemming from Hurricanes Katrina and Rita, inter-disciplinary working groups representing P30-funded Centers of the National Institute Environmental Health Sciences were created to assess threats posed by mold, harmful alga blooms, chemical toxicants, and various infectious agents at selected sites throughout the hurricane impact zone. Because of proximity to impacted areas, UTMB NIEHS Center in Environmental Toxicology was charged with coordinating direct community outreach efforts, primarily in south Louisiana. In early October 2005, UTMB/NIEHS Center Community Outreach and Education Core, in collaboration with outreach counterparts at The University of Texas MD Anderson Cancer Center @ Smithville TX/Center for Research in Environmental Disease sent two groups into southern Louisiana. One group used Lafourche Parish as a base to deliver humanitarian aid and assess local needs for additional supplies during local recovery/reclamation. A second group, ranging through New Iberia, New Orleans, Chalmette, rural Terrebonne, Lafourche and Jefferson Parishes and Baton Rouge met with community environmental leaders, emergency personnel and local citizens to 1) sample public risk perceptions, 2) evaluate the scope and reach of ongoing risk communication efforts, and 3) determine how the NIEHS could best collaborate with local groups in environmental health research and local capacity building efforts. This scoping survey identified specific information gaps limiting efficacy of risk communication, produced a community “wish list” of potential collaborative research projects. The project provided useful heuristics for disaster response and management planning and a platform for future collaborative efforts in environmental health assessment and risk communication with local advocacy groups in south Terrebonne-Lafourche parishes

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Differentiation of pathogenic and non-pathogenic leptospires by means of the polymerase chain reaction

    No full text
    A polymerase chain reaction was carried out to detect pathogenic leptospires isolated from animals and humans in Argentina. A double set of primers (G1/G2, B64-I/B64-II), described before, were used to amplify by PCR a DNA fragment from serogroups belonging to Leptospira interrogans but did not allow to detect saprophytic strains isolated from soil and water (L. biflexa). This fact represents an advantage since it makes possible the differentiation of pathogenic from non-pathogenic leptospires in cultures. The sensitivity of this assay has been determined, allowing to detect just only 10 leptospires in the reaction tube. Those sets of primers generated either a 285 bp or 360 bp fragment, depending on the pathogenic strain<br>Diferenciação das leptospiras patogênicas e não patogênicas por PCR Utilizou-se a reação em cadeia da polimerase (PCR) para identificar leptospiras patogênicas isoladas, na Argentina, de animais e do homem. Foram usados dois pares de primers (G1/G2; B64-I/B64-II), descritos anteriormente como apropriados para amplificar amostras pertencentes aos diferentes sorogrupos de Leptospira interrogans. Através deste método não se detectaram as leptospiras saprófitas (L. biflexa) isolados de água e solo. Este fato representa uma vantagem uma vez que possibilita a diferenciação de leptospiras patogênicas das não patogênicas em culturas. A sensibilidade da prova foi determinada, verificando-se que ela permitiu detectar 10 leptospiras por tubo de reação. Os tamanhos dos fragmentos amplificados foram de 285 ou 360 pares de bases (bp), dependendo da amostra patogênica estudad
    corecore