9 research outputs found

    Magnetic Drift Velocity Characterization of Iron Oxide- Silica Nanocarriers for Applications in Targeted Drug Delivery

    No full text
    Nanoparticles (NPs) are promising candidates to penetrate the blood brain barrier for delivering therapeutics to treat diseases affecting the central nervous system. However, obtaining effective doses of therapeutic NPs in diseased locations is challenging due to rapid sequestering by phagocytic organs. A potential solution is to use magnetic nanoparticles (MNPs) and guide them away from undesired organs through blood vessel networks. This can come to fruition if MNPs have large magnetic moments that enable high guiding efficiencies in technologically feasible magnetic field gradients (∇B ⃑). To this end, we designed nanobowls composed of a silica core embedded with magnetic iron oxide-NPs. These nanobowls are nanoparticles featuring a bowl-like pit for drug encapsulation. Nanobowls have a large magnetic moment of 2x〖10〗^(-17) Am^2. Guiding efficiency for nanobowls was determined in vitro using particle trajectories. The mathematical framework for particle trajectories involves the force balance between magnetic (F_M) and Stokes drag force. Magnetic drift velocity was measured as concentration flux toward a magnet to quantify F_M. This framework can be used to predict particle trajectories. Their validity was confirmed by imaging nanobowl cluster trajectories in different convective fluid flow and magnetic conditions. ∇B ⃑ used was larger than the average in commercial MRI machines. As expected, in 15 μm/s fluid velocity, clusters of nanobowls deviate 15° due to magnetic force. In case of physiological convection velocities often >1mm/s, framework calculations predict negligible deviation of nanobowls to the same ∇B ⃑ , insufficient for high guiding efficiency. Further work is thus required to develop larger magnetic moment nanocarriers

    Scavenging amyloid oligomers from neurons with silica nanobowls: Implications for amyloid diseases.

    No full text
    Amyloid-β (Aβ) oligomers are toxic species implicated in Alzheimer's disease (AD). The prevailing hypothesis implicates a major role of membrane-associated amyloid oligomers in AD pathology. Our silica nanobowls (NB) coated with lipid-polymer have submicromolar affinity for Aβ binding. We demonstrate that NB scavenges distinct fractions of Aβs in a time-resolved manner from amyloid precursor protein-null neuronal cells after incubation with Aβ. At short incubation times in cell culture, NB-Aβ seeds have aggregation kinetics resembling that of extracellular fraction of Aβ, whereas at longer incubation times, NB-Aβ seeds scavenge membrane-associated Aβ. Aβ aggregates can be eluted from NB surfaces by mechanical agitation and appear to retain their aggregation driving domains as seen in seeding aggregation experiments. These results demonstrate that the NB system can be used for time-resolved separation of toxic Aβ species from biological samples for characterization and in diagnostics. Scavenging membrane-associated amyloids using lipid-functionalized NB without chemical manipulation has wide applications in the diagnosis and therapy of AD and other neurodegenerative diseases, cancer, and cardiovascular conditions

    Magnetically-responsive silica-gold nanobowls for targeted delivery and SERS-based sensing.

    No full text
    Composite colloidal structures with multi-functional properties have wide applications in targeted delivery of therapeutics and imaging contrast molecules and high-throughput molecular bio-sensing. We have constructed a multifunctional composite magnetic nanobowl using the bottom-up approach on an asymmetric silica/polystyrene Janus template consisting of a silica shell around a partially exposed polystyrene core. The nanobowl consists of a silica bowl and a gold exterior shell with iron oxide magnetic nanoparticles sandwiched between the silica and gold shells. The nanobowls were characterized by electron microscopy, atomic force microscopy, magnetometry, vis-NIR and FTIR spectroscopy. Magnetically vectored transport of these nanobowls was ascertained by time-lapsed imaging of their flow in fluid through a porous hydrogel under a defined magnetic field. These magnetically-responsive nanobowls show distinct surface enhanced Raman spectroscopy (SERS) imaging capability. The PEGylated magnetically-responsive nanobowls show size-dependent cellular uptake in vitro

    Dual-Functionalized Theranostic Nanocarriers

    No full text
    Nanocarriers with the ability to spatially organize chemically distinct multiple bioactive moieties will have wide combinatory therapeutic and diagnostic (theranostic) applications. We have designed dual-functionalized, 100 nm to 1 μm sized scalable nanocarriers comprising a silica golf ball with amine or quaternary ammonium functional groups located in its pits and hydroxyl groups located on its nonpit surface. These functionalized golf balls selectively captured 10–40 nm charged gold nanoparticles (GNPs) into their pits. The selective capture of GNPs in the golf ball pits is visualized by scanning electron microscopy. ζ potential measurements and analytical modeling indicate that the GNP capture involves its proximity to and the electric charge on the surface of the golf balls. Potential applications of these dual-functionalized carriers include distinct attachment of multiple agents for multifunctional theranostic applications, selective scavenging, and clearance of harmful substances
    corecore