28 research outputs found

    Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression.</p> <p>Methods</p> <p>Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes.</p> <p>Results and Discussion</p> <p>We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent <it>in situ </it>hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age.</p> <p>Conclusion</p> <p>Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.</p

    Currents issues in cardiorespiratory care of patients with post-polio syndrome

    Get PDF
    Post-polio syndrome (PPS) is a condition that affects polio survivors years after recovery from an initial acute attack of the poliomyelitis virus. Most often, polio survivors experience a gradual new weakening in muscles that were previously affected by the polio infection. The actual incidence of cardiovascular diseases (CVDs) in individuals suffering from PPS is not known. However, there is a reason to suspect that individuals with PPS might be at increased risk. Method: A search for papers was made in the databases Bireme, Scielo and Pubmed with the following keywords: post polio syndrome, cardiorespiratory and rehabilitation in English, French and Spanish languages. Although we targeted only seek current studies on the topic in question, only the relevant (double-blind, randomized-controlled and consensus articles) were considered. Results and Discussion: Certain features of PPS such as generalized fatigue, generalized and specific muscle weakness, joint and/or muscle pain may result in physical inactivity deconditioning obesity and dyslipidemia. Respiratory difficulties are common and may result in hypoxemia. Conclusion: Only when evaluated and treated promptly, somE patients can obtain the full benefits of the use of respiratory muscles aids as far as quality of life is concerned.Ctr Univ Augusto Motta, Programa Posgrad Ciencias Reabilitacao, Rio De Janeiro, RJ, BrazilUniv Severino Sombra, Fac Med, Vassouras, RJ, BrazilUniv Fed Rio de Janeiro, Inst Psiquiatria, Lab Mapeamento Cerebral & EEG, BR-22290140 Rio De Janeiro, RJ, BrazilUniv Fed Fluminense, Hosp Univ Antonio Pedro, Niteroi, RJ, BrazilInst Fed Educ Ciencia & Tecnol Rio de Janeiro, Curso Fisioterapia, Rio De Janeiro, RJ, BrazilUniv Fed Piaui, Parnaiba, PI, BrazilUniv Fed Sao Paulo, Dept Neurol, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Neurol, Sao Paulo, SP, BrazilWeb of Scienc

    A Mycobacterium leprae Hsp65 Mutant as a Candidate for Mitigating Lupus Aggravation in Mice

    Get PDF
    Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F1 mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K409A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K409A pep synthetic peptides, which cover residues 352–371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K409A+Leader pep or K409A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352–371 region. The number of interactions observed for WT is much higher than for Hsp65 K409A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F1 mice were inoculated with Hsp60 or K409A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K409A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases

    Administration of M. leprae Hsp65 Interferes with the Murine Lupus Progression

    Get PDF
    The heat shock protein [Hsp] family guides several steps during protein synthesis, are abundant in prokaryotic and eukaryotic cells, and are highly conserved during evolution. The Hsp60 family is involved in assembly and transport of proteins, and is expressed at very high levels during autoimmunity or autoinflammatory phenomena. Here, the pathophysiological role of the wild type [WT] and the point mutated K409A recombinant Hsp65 of M. leprae in an animal model of Systemic Lupus Erythematosus [SLE] was evaluated in vivo using the genetically homogeneous [NZBxNZW]F1 mice. Anti-DNA and anti-Hsp65 antibodies responsiveness was individually measured during the animal's life span, and the mean survival time [MST] was determined. The treatment with WT abbreviates the MST in 46%, when compared to non-treated mice [p<0.001]. An increase in the IgG2a/IgG1 anti-DNA antibodies ratio was also observed in animals injected with the WT Hsp65. Incubation of BALB/c macrophages with F1 serum from WT treated mice resulted in acute cell necrosis; treatment of these cells with serum from K409A treated mice did not cause any toxic effect. Moreover, the involvement of WT correlates with age and is dose-dependent. Our data suggest that Hsp65 may be a central molecule intervening in the progression of the SLE, and that the point mutated K409A recombinant immunogenic molecule, that counteracts the deleterious effect of WT, may act mitigating and delaying the development of SLE in treated mice. This study gives new insights into the general biological role of Hsp and the significant impact of environmental factors during the pathogenesis of this autoimmune process

    Premolis semirufa (Walker, 1856) Envenomation, Disease Affecting Rubber Tappers of the Amazon: Searching for Caterpillar-Bristles Toxic Components

    Get PDF
    Pararama, the popular name of the larval form of the moth Premolis semirufa inhabits rubber plantations in the Amazon region and the accidental contact of the skin with the caterpillar's bristles or cocoons results in immediate and intense heat, pain, edema, and itching. In many cases a chronic inflammatory reaction with immobilization of the joints occurs. The current study has evaluated the biological and immunochemical characteristics of the Pararama caterpillar bristles extract. Electrophoretic analysis showed the presence of several components, including a very intense 82 kDa band. This latter component was endowed with intense gelatinolytic activity, as observed in zymography assays. Further analysis revealed that the extract also contained hyaluronidase activity but is devoid of phospholipase A2 activity. In vivo assays, using mice, showed that the extract was not lethal, but caused significant edema and induced intense infiltration of inflammatory cells to the envenomation site. The extract also induced high specific antibody titers, but no autoantibodies were detected. The data obtained, so far, demonstrate the existence of a mixture of different enzymes in the bristles of Premolis semirufa caterpillar, which can act together in the generation and development of the clinical manifestations of the Pararama envenomation

    Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus

    Get PDF
    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites

    A Rational Design for the Nanoencapsulation of Poisonous Animal Venoms in Liposomes Prepared with Natural Phospholipids

    Full text link
    Liposomes have been used since the 1970's to encapsulate drugs envisaging enhancement in efficacy and therapeutic index, avoidance of side effects and increase in the encapsulated agent stability. The major problem when encapsulating snake venoms is the liposomal membrane instability caused by venom phospholipases. Here the results obtained encapsulating Crotalus durissimus terrificus and a pool of Bothropic venoms within liposomes (LC and LB, respectively) used to produce anti-venom sera are presented. The strategy was to modify the immunization protocol to enhance antibody production and to minimize toxic effects by encapsulating inactivated venoms within stabilized liposomes. Chemically modified venoms were solubilised in a buffer containing an inhibitor and a chelating agent. The structures of the venoms were analysed by UV, CD spectroscopy and ELISA. In spite of the differences in the helical content between natural and modified venoms, they were recognized by horse anti-sera. To maintain long-term stabi

    Evaluation of NDEL1 oligopeptidase activity in blood and brain in an animal model of schizophrenia: effects of psychostimulants and antipsychotics

    No full text
    Nuclear distribution element-like 1 (NDEL1) enzyme activity is important for neuritogenesis, neuronal migration, and neurodevelopment. We reported previously lower NDEL1 enzyme activity in blood of treated first episode psychosis and chronic schizophrenia (SCZ) compared to healthy control subjects, with even lower activity in treatment resistant chronic SCZ patients, implicating NDEL1 activity in SCZ. Herein, higher NDEL1 activity was observed in the blood and several brain regions of a validated animal model for SCZ at baseline. In addition, long-term treatment with typical or atypical antipsychotics, under conditions in which SCZ-like phenotypes were reported to be reversed in this animal model for SCZ, showed a significant NDEL1 activity reduction in blood and brain regions which is in line with clinical data. Importantly, these results support measuring NDEL1 enzyme activity in the peripheral blood to predict changes in NDEL1 activity in the CNS. Also, acute administration of psychostimulants, at levels reported to induce SCZ-like phenotype in normal rat strains, increased NDEL1 enzyme activity in blood. Therefore, alterations in NDEL1 activity after treatment with antipsychotics or psychostimulants may suggest a possible modulation of NDEL1 activity secondary to neurotransmission homeostasis and provide new insights into the role of NDEL1 in SCZ pathophysiology
    corecore