14 research outputs found

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Pseudorapidity density of charged particles p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    No full text
    The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair sNN\sqrt{s_{NN}} = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81 ±\pm 0.71 (syst.), which corresponds to 2.14 ±\pm 0.17 (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at sNN\sqrt{s_{NN}} = 0.2 TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.The charged-particle pseudorapidity density measured over four units of pseudorapidity in nonsingle-diffractive p+Pb collisions at a center-of-mass energy per nucleon pair sNN=5.02  TeV is presented. The average value at midrapidity is measured to be 16.81±0.71  (syst), which corresponds to 2.14±0.17  (syst) per participating nucleon, calculated with the Glauber model. This is 16% lower than in nonsingle-diffractive pp collisions interpolated to the same collision energy and 84% higher than in d+Au collisions at sNN=0.2  TeV. The measured pseudorapidity density in p+Pb collisions is compared to model predictions and provides new constraints on the description of particle production in high-energy nuclear collisions.The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81±0.7116.81 \pm 0.71 (syst.), which corresponds to 2.14±0.172.14 \pm 0.17 (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at sNN=0.2\sqrt{s_{\rm NN}} = 0.2 TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions

    Charge correlations using the balance function in Pb?Pb collisions at ?sNN = 2.76 TeV

    No full text
    In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this article, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity \Delta\eta and azimuthal angle \Delta\phi in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in \Delta\phi but fails to describe the correlations in \Delta\eta. A thermal blast wave model incorporating local charge conservation and tuned to describe the p_T spectra and v_2 measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with sqrt{s_{NN}}: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in \Delta\eta and \Delta\phi with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy-ion collision
    corecore