3 research outputs found

    Síntesis y caracterización espectroscópica de sulfatos de hierro: implicaciones en astrobiología y la exploración de Marte

    Get PDF
    Hay una serie de aspectos que fundamentan la necesidad y el interés de las investigaciones que en este proyecto de tesis se recogen. Por un lado, el interés por los sulfatos de hierro. Estos sulfatos tienen unas características físico químicas y estructurales que suponen un autentico mundo a descubrir y describir, con variadas composiciones, variados comportamientos acido-base y redox, diferentes grados de hidratación y diferentes disposiciones estructurales para mismas composiciones. La descripción detallada de cada una de estas especies se ha abordado habitualmente por separado o mediante alguna técnica en particular ofreciendo en ocasiones visiones parciales de estos compuestos. Por otro lado, las técnicas espectroscópicas, en particular la espectroscopia Raman se han presentado como una herramienta muy poderosa a la hora de caracterizar estos sulfatos de manera muy precisa dándonos información tanto acerca de su composición como en algunos casos de su estructura. Finalmente, el estudio de estos sulfatos tiene una gran importancia en la Astrobiología y en particular en el estudio de la superficie del planeta Marte. Desde el primer momento se describió la abundancia de compuestos de hierro en su superficie y cuando las técnicas y los vehículos lanzados a su superficie evolucionaron, se encontraron a su vez abundantes y variados sulfatos, siendo un hito desde el punto de vista Astrobiológico el descubrimiento de Jarosita por el rover Oportunity Si a esto le unimos la presencia de un espectrómetro Raman en la próxima misión a Marte de la ESA denominada Exomars, todos los estudios previos de estos compuestos mediante esta técnica adquieren especial relevancia. Por tanto, para el desarrollo de esta tesis se han propuesto los siguientes objetivos: • Definir métodos de síntesis precisos y controlados que permitan obtener compuestos puros o al menos en condiciones muy controladas que permitan generar estándares. • Caracterizar los compuestos obtenidos mediante la mayor cantidad de técnicas de las que se pueda disponer y que proporcionen la mayor información posible sobre su composición, estructura y en algún caso estabilidad. • Extraer y combinar la información obtenida tanto de la síntesis como de la caracterización para general modelos de estabilidad, de reactividad y secuencias de reacción de utilidad a la hora de analizar estos compuestos. • Utilizar y aplicar estos modelos a la posible caracterización de los compuestos que pudieran ser encontrados y descritos en las futuras misiones a Marte.Departamento de Física de la Materia Condensada, Cristalografía y Minerealogí

    Raman–Mo¨ssbauer–XRD studies of selected samples from ‘‘Los Azulejos” outcrop: A possible analogue for assessing the alteration processes on Mars

    Get PDF
    The outcrop of ‘‘Los Azulejos” is visible at the interior of the Can˜adas Caldera in Tenerife Island (Spain). It exhibits a great variety of alteration processes that could be considered as terrestrial analogue for several geological processes on Mars. This outcrop is particularly interesting due to the content of clays, zeolite, iron oxides, and sulfates corresponding to a hydrothermal alteration catalogued as ‘‘Azulejos” type alteration. A detailed analysis by portable and laboratory Raman systems as well as other different techniques such as X-ray diffraction (XRD) and Mo¨ssbauer spectroscopy has been carried out (using twin-instruments from Martian lander missions: Mo¨ssbauer spectrometer MIMOS-II from the NASA-MER mission of 2001 and the XRD diffractometer from the NASA-MSL Curiosity mission of 2012). The mineral identification presents the following mineral species: magnetite, goethite, hematite, anatase, rutile, quartz, gregoryite, sulfate (thenardite and hexahydrite), diopside, feldspar, analcime, kaolinite and muscovite. Moreover, the in-situ Raman and Micro- Raman measurements have been performed in order to compare the capabilities of the portable system specially focused for the next ESA Exo-Mars mission. The mineral detection confirms the sub-aerial alteration on the surface and the hydrothermal processes by the volcanic fluid circulations in the fresh part. Therefore, the secondary more abundant mineralization acts as the color agent of the rocks. Thus, the zeolite–illite group is the responsible for the bluish coloration, as well as the feldspars and carbonates for the whitish and the iron oxide for the redish parts. The XRD system was capable to detect a minor proportion of pyroxene, which is not visible by Raman and Mo¨ssbauer spectroscopy due to the ‘‘Azulejos” alteration of the parent material on the outcrop. On the other hand, Mo¨ ssbauer spectroscopy was capable of detecting different types of iron-oxides (Fe3+/2+-oxide phases). These analyses emphasize the strength of the different techniques and the working synergy of the three different techniques together for planetary space missions

    The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Get PDF
    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working to develop models for interpreting analog processes on Mars during the mission. Key Words: Raman spectroscopy—ExoMars mission—Instruments and techniques—Planetary sciences—Mars mineralogy and geochemistry—Search for life on Mars. Astrobiology 17, 627–65
    corecore