9,475 research outputs found

    Quenching of pairing gap at finite temperature in 184W

    Full text link
    We extract pairing gap in 184^{184}W at finite temperature for the first time from the experimental level densities of 183^{183}W, 184^{184}W, and 185^{185}W using "thermal" odd-even mass difference. We found the quenching of pairing gap near the critical temperature Tc=0.47T_c = 0.47 MeV in the BCS calculations. It is shown that the monopole pairing model with a deformed Woods-Saxon potential explains the reduction of the pairing correlation using the partition function with the number parity projection in the static path approximation plus random-phase approximation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Modification of Angular Velocity by Inhomogeneous MRI Growth in Protoplanetary Disks

    Full text link
    We have investigated evolution of magneto-rotational instability (MRI) in protoplanetary disks that have radially non-uniform magnetic field such that stable and unstable regions coexist initially, and found that a zone in which the disk gas rotates with a super-Keplerian velocity emerges as a result of the non-uniformly growing MRI turbulence. We have carried out two-dimensional resistive MHD simulations with a shearing box model. We found that if the spatially averaged magnetic Reynolds number, which is determined by widths of the stable and unstable regions in the initial conditions and values of the resistivity, is smaller than unity, the original Keplerian shear flow is transformed to the quasi-steady flow such that more flattened (rigid-rotation in extreme cases) velocity profile emerges locally and the outer part of the profile tends to be super-Keplerian. Angular momentum and mass transfer due to temporally generated MRI turbulence in the initially unstable region is responsible for the transformation. In the local super-Keplerian region, migrations due to aerodynamic gas drag and tidal interaction with disk gas are reversed. The simulation setting corresponds to the regions near the outer and inner edges of a global MRI dead zone in a disk. Therefore, the outer edge of dead zone, as well as the inner edge, would be a favorable site to accumulate dust particles to form planetesimals and retain planetary embryos against type I migration.Comment: 28 pages, 11figures, 1 table, accepted by Ap

    Electronic States and Superconducting Transition Temperature based on the Tomonaga-Luttinger liquid in Pr2_{2}Ba4_{4}Cu7_{7}O15δ_{15-\delta}

    Full text link
    An NQR experiment revealed superconductivity of Pr2_2Ba4_4Cu7_7O15δ_{15-\delta} (Pr247) to be realized on CuO double chain layers and suggests possibility of novel one-dimensional(1D) superconductivity. To clarify the nature of the 1D superconductivity, we calculate the band dispersions of Pr247 by using the generalized gradient approximation(GGA). It indicates that Fermi surface of CuO double chains is well described to the electronic structure of a quasi-1D system. Assuming the zigzag Hubbard chain model to be an effective model of the system, we derive tight binding parameters of the model from a fit to the result of GGA. Based on the Tomonaga-Luttinger liquid theory, we estimate transition temperature (TcT_c) of the quasi-1D zigzag Hubbard model from the calculated value of the Luttinger liquid parameter KρK_{\rho}. The result of TcT_c is consistent with that of experiments in Pr247 and it suggests that the mechanism of the superconductivity is well understood within the concept of the Tomonaga-Luttinger liquid.Comment: 4 pages, 5 figure

    A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks

    Get PDF
    The evolution of the magnetorotational instability (MRI) during the transition from outburst to quiescence in a dwarf nova disk is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted for the analysis, so that the efficiency of angular momentum transport is studied in a small local patch of the disk: this is usually referred as to a one-zone model. To take account of the low ionization fraction of the disk, the induction equation includes both ohmic dissipation and the Hall effect. We induce a transition from outburst to quiescence by an instantaneous decrease of the temperature. The evolution of the MRI during the transition is found to be very sensitive to the temperature of the quiescent disk. As long as the temperature is higher than a critical value of about 2000 K, MHD turbulence and angular momentum transport is sustained by the MRI. However, MHD turbulence dies away within an orbital time if the temperature falls below this critical value. In this case, the stress drops off by more than 2 orders of magnitude, and is dominated by the Reynolds stress associated with the remnant motions from the outburst. The critical temperature depends slightly on the distance from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap

    Coupling curvature to a uniform magnetic field; an analytic and numerical study

    Full text link
    The Schrodinger equation for an electron near an azimuthally symmetric curved surface Σ\Sigma in the presence of an arbitrary uniform magnetic field B\mathbf B is developed. A thin layer quantization procedure is implemented to bring the electron onto Σ\Sigma, leading to the well known geometric potential VCh2kV_C \propto h^2-k and a second potential that couples ANA_N, the component of A\mathbf A normal to Σ\Sigma to mean surface curvature, as well as a term dependent on the normal derivative of ANA_N evaluated on Σ\Sigma. Numerical results in the form of ground state energies as a function of the applied field in several orientations are presented for a toroidal model.Comment: 12 pages, 3 figure
    corecore