7 research outputs found

    A Small Molecule Swertisin from Enicostemma littorale

    Get PDF
    Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes

    Swertiamarin: An Active Lead from Enicostemma littorale Regulates Hepatic and Adipose Tissue Gene Expression by Targeting PPAR-γ and Improves Insulin Sensitivity in Experimental NIDDM Rat Model

    No full text
    Enicostemma littorale (EL) Blume is one of the herbs widely used for treating and alleviating the effects of both type I and type II diabetes. However, lack of understanding of mechanism precludes the use of the herb and its molecules. In this study, we attempt to unravel the molecular mechanism of action of swertiamarin, a compound isolated form EL, by comparing its molecular effects with those of aqueous EL extract in alleviating the insulin resistance in type II diabetes. We further investigated hypolipidemic and insulin sensitizing effect of swertiamarin in experimentally induced noninsulin dependent diabetes mellitus (NIDDM) in rats. Swertiamarin (50 mg/kg) and aqueous extract (15 grams dried plant equivalent extract/kg) were administered to rats orally for 40 days and tight regulation of serum glucose, insulin, and lipid profile was found in both groups. Their mode of action was by restoring G6Pase and HMG-CoA reductase activities to normal levels and restoring normal transcriptional levels of PEPCK, GK, Glut 2, PPAR-γ, leptin, adiponectin, LPL, SREBP-1c, and Glut 4 genes. This suggests that both treatments increased insulin sensitivity and regulated carbohydrate and fat metabolism. This is the first report on the role of SM in regulating the PPARγ-mediated regulation of candidate genes involved in metabolism in peripheral tissues in vivo

    A Novel VLSI Architecture for FFT Utilizing Proposed 4:2 & 7:2 Compressor

    No full text
    <p>With the appearance of new innovation in the fields of VLSI and correspondence, there is likewise a perpetually developing interest for fast transforming and low range outline. It is likewise a remarkable certainty that the multiplier unit structures a fundamental piece of processor configuration. Because of this respect, rapid multiplier architectures turn into the need of the day. In this paper, we acquaint a novel structural engineering with perform high velocity duplication utilizing old Vedic math's strategies. Another fast approach using 4:2 compressors and novel 7:2 compressors for expansion has additionally been joined in the same and has been investigated. Upon examination, the compressor based multiplier present in this paper, is just about two times quicker than the mainstream routines for augmentation. Likewise we outline a FFT utilizing compressor based multiplier. This all configuration and examinations were done on a Xilinx Spartan 3e arrangement of FPGA and the timing and zone of the outline, on the same have been ascertained.</p

    Comparison of various methods for removing double antibiotic paste from root canal walls during regenerative endodontic therapy

    No full text
    Aim: This study investigated the efficacy of Endoactivator, Pro-agitator tip system (PATS) Vario, BF brush, and dual side-vented needle irrigation to remove double antibiotic paste (DAP) from the root canal. Methods: Biomechanical preparation till size #25 (F2) was carried out utilizing the Protaper Universal System on 92 extracted teeth with single root and root canal. All the canals were filled with DAP for 21 days, and the roots were split into two halves (n = 20) and divided into four groups randomly based on the irrigation method, using either dual side-vented needle irrigation, BF brush, Endoactivator, or PATS Vario. Under a stereomicroscope, the quantity of medication still present at every root half was assessed using a four-grade scoring system. Results: PATS Vario (0.46 ± 0.50) followed by Endoactivator (0.46 ± 0.52) groups were substantially more effective at eliminating DAP from the root canal than BF brush groups (0.98 ± 0.58) and dual side-vented irrigation tips (2.29 ± 0.53) (P < 0.05) However, none of the methods succeeded in entirely removing antibiotic paste from canal walls. Conclusion: PATS Vario Group was more efficient than Endoactivator at eliminating DAP from root canal walls, but the difference was not statistically significant (P > 0.05)

    Supplementary figures - Gold nanoblackbodies mediated plasmonic photothermal cancer therapy for melanoma nnm-2022-0052

    No full text
    Aim: Gold nanoblackbodies (AuNBs)-mediated plasmonic photothermal cancer therapy was investigated through melanoma-bearing mice. Materials & methods: Polydopamine-coated Au nanoclusters were synthesized, termed AuNBs and PEGylated AuNBs (AuNBs-PEG). The photothermal response of AuNBs- PEG was evaluated upon low-intensity broadband near-infrared irradiation (785/62 nm; 0.9 Wcm-2), and cytotoxicity was assessed on B16-F10 cells. Further, the therapeutic potential of intravenously administered AuNBs-PEG was evaluated on B16-F10 melanoma in C57BL/6 mice. Results: AuNBs-PEG showed an excellent photothermal response (photothermal conversion efficiency of 60.3%), robust photothermal stability and no cytotoxicity. For AuNB-mediated plasmonic photothermal therapy, an average temperature of 63â—¦C was attained within 5 min of irradiation, and tumors were eradicated. Conclusion: AuNBs-PEG are promising photothermal agents for treating melanoma through low-intensity broadband near-infrared irradiation.</p
    corecore