24 research outputs found

    Structure-Based Design of Grp94-Selective Inhibitors

    Get PDF
    Heat shock protein 90 KDa (Hsp90) belongs to family of proteins called molecular chaperone that are associated with protein folding and maturation. Hsp90 clients play a critical role in the pathogenesis of diseases such as cancer, neurodegeneration and infection. Currently, clinical trials are underway for various Hsp90 inhibitors, however, all of these inhibitors exhibit paninhibition of all four Hsp90 isoforms, which could be the cause of side effects observed with these inhibitors, including, hepatotoxicity, cardiotoxicity, and renal toxicity. Hence, the development of isoform selective Hsp90 inhibitor is needed to delineate the role each Hsp90 isoform plays towards the pathogenesis of these toxicities. One such isoform is the ER residing glucose regulated protein (Grp94), which is important for cellular communication and adhesion. Co-crystallization studies of radamide, an Hsp90 pan-inhibitor developed in our lab established that there exists a unique hydrophobic pocket found only in Grp94. To probe this pocket, two approaches have been investigated; 1) des-quinone analogs of radamide and 2) employing cis-amide isosteres. The co-crystal structure of cis-amide isostere compound BnIm bound to Gp94 and Hsp90 led to the discovery of a novel pocket in Grp94 due to ligand induced conformational change. This pocket has been probed by the modification of SNX 2112, a pan-inhibitor of Hsp90 that is currently undergoing clinical evaluation. These modifications have resulted in the identification of ACO1, which exhibits good potency and high selectivity towards Grp94. Rationale for the design of ACO analogs is discussed alongside their inhibition activities

    Development of Glucose Regularted Protein 94-Selective Inhibitors Based on the Bnlm and Radamide Scaffold

    Get PDF
    Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Grp94 associates with many proteins involved in cell adhesion and signaling, including integrins, Toll-like receptors, immunoglobulins, and mutant myocilin. Grp94 has been implicated as a target for several therapeutic areas including glaucoma, cancer metastasis, and multiple myeloma. While 85% identical to other Hsp90 isoforms, the N-terminal ATP-binding site of Grp94 possesses a unique hydrophobic pocket that was used to design isoform-selective inhibitors. Incorporation of a cis-amide bioisostere into the radamide scaffold led to development of the original Grp94-selective inhibitor, BnIm. Structure–activity relationship studies have now been performed on the aryl side chain of BnIm, which resulted in improved analogues that exhibit better potency and selectivity for Grp94. These analogues also manifest superior antimigratory activity in a metastasis model as well as enhanced mutant myocilin degradation in a glaucoma model compared to BnIm

    Structure-guided design of an Hsp90â N-terminal isoform-selective inhibitor

    Get PDF
    The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method to overcome the detriments associated with pan-inhibition

    Anti-inflammatory activities of novel heat shock protein 90 isoform selective inhibitors in BV-2 microglial cells

    Get PDF
    Heat shock protein 90 (Hsp90) is a family of chaperone proteins that consists of four isoforms: Hsp90α, Hsp90β, glucose-regulated protein 94 (Grp94), and tumor necrosis factor type 1 receptor-associated protein (TRAP1). They are involved in modulating the folding, maturation, and activation of their client proteins to regulate numerous intracellular signaling pathways. Previous studies demonstrated that pan-Hsp90 inhibitors reduce inflammatory signaling pathways resulting in a reduction of inflammation and pain but show toxicities in cancer-related clinical trials. Further, the role of Hsp90 isoforms in inflammation remains poorly understood. This study aimed to determine anti-inflammatory activities of Hsp90 isoforms selective inhibitors on the lipopolysaccharide (LPS)-induced inflammation in BV-2 cells, a murine microglial cell line. The production of inflammatory mediators such as nitric oxide (NO), interleukin 1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) was measured. We also investigated the impact of Hsp90 isoform inhibitors on the activation of nuclear factor kappa B (NF-κB), nuclear factor erythroid 2–related factor 2 (Nrf2), and mitogen-activated protein kinases (MAPKs). We found that selective inhibitors of Hsp90β reduced the LPS-induced production of NO, IL-1β, and TNF-α via diminishing the activation of NF-κB and Extracellular signal-regulated kinases (ERK) MAPK. The Hsp90α, Grp94, TRAP1 inhibitors had limited effect on the production of inflammatory mediators. These findings suggest that Hsp90β is the key player in LPS-induced neuroinflammation. Thereby providing a more selective drug target for development of medications involved in pain management that can potentially contribute to the reduction of adverse side effects associated with Hsp90 pan inhibitors

    Grp94 selective inhibitors and uses thereof

    No full text
    The present technology provides compounds according to Formula I or Formula III as well as compositions including such compounds useful for the treatment of metastatic cancer and/or glaucoma

    GRP94 selective inhibitors and uses thereof

    No full text
    The present technology provides compounds according to Formula I or Formula III as well as compositions including such compounds useful for the treatment of metastatic cancer and/or glaucoma

    Development of Radamide Analogs as Grp94 Inhibitors

    Get PDF
    Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (Kd = 820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226

    Hsp90β inhibition upregulates interferon response and enhances immune checkpoint blockade therapy in murine tumors

    No full text
    Response resistance to the immune checkpoint blockade (ICB) immunotherapy remains a major clinical challenge that may be overcome through the rational combination of ICB and specific targeted therapeutics. One emerging combination strategy is based on sensitizing ICB-refractory tumors with antagonists of 90kD heat shock protein (Hsp90) that target all four isoforms. However, pan-Hsp90 inhibitors are limited by the modest efficacy, on-target and off-tumor toxicities, and induction of the heat shock response (HSR) that overrides the effect of Hsp90 inhibition. Recently, we developed Hsp90β-selective inhibitors that were cytotoxic to cancer cells but did not induce HSR in vitro. Here, we report that the Hsp90β inhibitor NDNB1182 downregulated CDK4 (an Hsp90β-dependent client protein) and induced the expression of endogenous retroviral elements and interferon-stimulated genes. In syngeneic mouse models of prostate cancer and breast cancer, NDNB1182 significantly augmented the efficacy of ICB therapy. Furthermore, NDNB1182 showed superior tolerability to the pan-Hsp90 inhibitor Ganetespib in mice. Our findings provide evidence that Hsp90β inhibition is a potentially effective and safe regimen to combine with ICB to treat immunotherapy-refractory solid tumors

    Highly flame-retardant polyurethane foam based on reactive phosphorus polyol and limonene-based polyol

    No full text
    Polyurethane foams are in general flammable and their flammability can be controlled by adding flame-retardant (FR) materials. Reactive FR have the advantage of making strong bond within the polyurethane chains to provide excellent FR over time without compromising physico-mechanical properties. Here, phenyl phosphonic acid and propylene oxide-based reactive FR polyol was synthesized and used along with limonene based polyol for preparation of FR polyurethanes. All the obtained foams showed higher closed cell content (above 96%). By the addition of FR–polyol, the compressive strength of the foams showed 160% increment which could be due to reactive nature of FR–polyol. Moreover, 1.5 wt % of phosphorus (P) content reduced the self-extinguishing time of the foam from 81 (28% weight loss) to 11.2 s (weight loss of 9.8%). Cone test showed 68.6% reduction in peak heat release rate along with 23.4% reduction in thermal heat release. The change in char structure of carbon after burning was analyzed using Raman spectra which, suggests increment in the graphitic phase of the carbon over increased concentration of phosphorus. It can be concluded from this study that phosphorous based polyol could be blended with bio-based polyols to prepare highly FR and superior physico-mechanical rigid polyurethane foams. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46224
    corecore