24 research outputs found

    GREEN SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM WITHANIA SOMNIFERA (L.) DUNAL

    Get PDF
    The metal nanoparticle synthesis is highly explored the field of nanotechnology. The biological methods seem to be more effective because of slowreduction rate and polydispersity of the final products. The main aim of this study is too the rapid and simplistic synthesis of silver nanoparticlesby Withania somnifera Linn. at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of W. somniferaresulted in reduction of metal ions within 5 minutes. The extracellular synthesized silver nanoparticles were characterized by ultraviolet-visible,infrared (IR) spectroscopy, X-ray diffraction studies, zeta potential, Fourier transform IR, and scanning electron microscopy. The antibacterial andantifungal studies showed significant activity as compared to their respective standards. From the results, W. somnifera sliver nanoparticle has attainedthe maximum antimicrobial against clinical pathogens and also seen very good stability of nanoparticle throughput processing. As we concluded, thistype of naturally synthesized sliver nanoparticle could be a better green revolution in medicinal chemistry.Keywords: Antimicrobial activity, Silver nanoparticles, Withania somnifera

    Babies of South Asian and European Ancestry Show Similar Associations With Genetic Risk Score for Birth Weight Despite the Smaller Size of South Asian Newborns.

    Get PDF
    Size at birth is known to be influenced by various fetal and maternal factors, including genetic effects. South Asians have a high burden of low birth weight and cardiometabolic diseases, yet studies of common genetic variations underpinning these phenotypes are lacking. We generated independent, weighted fetal genetic scores (fGSs) and maternal genetic scores (mGSs) from 196 birth weight-associated variants identified in Europeans and conducted an association analysis with various fetal birth parameters and anthropometric and cardiometabolic traits measured at different follow-up stages (5-6-year intervals) from seven Indian and Bangladeshi cohorts of South Asian ancestry. The results from these cohorts were compared with South Asians in UK Biobank and the Exeter Family Study of Childhood Health, a European ancestry cohort. Birth weight increased by 50.7 g and 33.6 g per SD of fGS (P = 9.1 × 10-11) and mGS (P = 0.003), respectively, in South Asians. A relatively weaker mGS effect compared with Europeans indicates possible different intrauterine exposures between Europeans and South Asians. Birth weight was strongly associated with body size in both childhood and adolescence (P = 3 × 10-5 to 1.9 × 10-51); however, fGS was associated with body size in childhood only (P < 0.01) and with head circumference, fasting glucose, and triglycerides in adults (P < 0.01). The substantially smaller newborn size in South Asians with comparable fetal genetic effect to Europeans on birth weight suggests a significant role of factors related to fetal growth that were not captured by the present genetic scores. These factors may include different environmental exposures, maternal body size, health and nutritional status, etc. Persistent influence of genetic loci on size at birth and adult metabolic syndrome in our study supports a common genetic mechanism that partly explains associations between early development and later cardiometabolic health in various populations, despite marked differences in phenotypic and environmental factors in South Asians

    DNA methylation signatures associated with cardiometabolic risk factors in children from India and The Gambia: results from the EMPHASIS study.

    Get PDF
    BACKGROUND: The prevalence of cardiometabolic disease (CMD) is rising globally, with environmentally induced epigenetic changes suggested to play a role. Few studies have investigated epigenetic associations with CMD risk factors in children from low- and middle-income countries. We sought to identify associations between DNA methylation (DNAm) and CMD risk factors in children from India and The Gambia. RESULTS: Using the Illumina Infinium HumanMethylation 850 K Beadchip array, we interrogated DNAm in 293 Gambian (7-9 years) and 698 Indian (5-7 years) children. We identified differentially methylated CpGs (dmCpGs) associated with systolic blood pressure, fasting insulin, triglycerides and LDL-Cholesterol in the Gambian children; and with insulin sensitivity, insulinogenic index and HDL-Cholesterol in the Indian children. There was no overlap of the dmCpGs between the cohorts. Meta-analysis identified dmCpGs associated with insulin secretion and pulse pressure that were different from cohort-specific dmCpGs. Several differentially methylated regions were associated with diastolic blood pressure, insulin sensitivity and fasting glucose, but these did not overlap with the dmCpGs. We identified significant cis-methQTLs at three LDL-Cholesterol-associated dmCpGs in Gambians; however, methylation did not mediate genotype effects on the CMD outcomes. CONCLUSION: This study identified cardiometabolic biomarkers associated with differential DNAm in Indian and Gambian children. Most associations were cohort specific, potentially reflecting environmental and ethnic differences

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    NCOVID -19 Pandemic Outbreak in India - A Concise Review

    Full text link
    The beginning of 2021 has seen outbreaks of novel coronavirus COVID-19 infections, which have become a global pandemic.&nbsp; It is considered to have higher contagiousness and mortality compared to SARS and MERS. Clinical manifestations of nCOVID-19 symptoms are identified as coughs, fevers, vomiting, chills, joint pain, shortness of breath, and diarrhea. Older people over 70 years of age and those with chronic debilitating diseases such as end-stage illness, diabetes mellitus, hypertension, and pulmonary diseases are at a higher risk of mortality from nCOVID-19 infection. Currently, no specific approved antiviral drugs are available against nCOVID-19. Considering this imminent need, scientists and physicians have been racing to better understand this new pandemic virus-specific mechanism; pathophysiology, and target site of the disease to find effective therapeutic agents and vaccines. This review summarised the origin, transmission, clinical symptoms, and conventional outcome treatment strategies of infection. It also included a discussion of the potential for recurrence. In our study, we emphasised reported potential repurposing drugs that are effective against SARS, MERS, and nCOVID-19, among other diseases. Our early knowledge will provide an overview of the intelligence basis work for currently existing therapeutic vaccines against nCOVID-19 that will be useful in the development of future vaccines

    Babies of South Asian and European Ancestry Show Similar Associations with Genetic Risk Score for Birth Weight Despite the Smaller Size of South Asian Newborns

    Get PDF
    Size at birth is known to be influenced by various fetal and maternal factors including genetic effects. South Asians have a high burden of low birthweight and cardiometabolic diseases, yet studies of common genetic variations underpinning these phenotypes are lacking. We generated independent, weighted fetal genetic score (fGS) and maternal genetic score (mGS) from 196 birthweight-associated variants identified in Europeans and conducted association analysis with various fetal birth parameters and anthropometric and cardiometabolic traits measured at different follow-up stages (5-6 years' intervals) from seven Indian and Bangladeshi cohorts of South Asian ancestry. The results from above cohorts were compared with South Asians in UK BioBank and The Exeter Family Study of Childhood Health, a European ancestry cohort. Birthweight increased by 50.7g and 33.6g per standard deviation of fGS (p = 9.1×10-11) and mGS (p = 0.003) respectively in South Asians. A relatively weaker maternal genetic score effect compared to Europeans indicates possible different intrauterine exposures between Europeans and South Asians. Birthweight was strongly associated with body size in both childhood and adolescence (p = 3×10-5 - 1.9×10-51), however, fetal genetic score was associated with body size in childhood only (p < 0.01) and with head circumference, fasting glucose and triglycerides in adults (p < 0.01). The substantially smaller newborn size in South Asians with comparable fetal genetic effect to Europeans on birthweight suggests a significant role of factors related to fetal growth that were not captured by the present genetic scores. These factors may include different environmental exposures, maternal body size, health and nutritional status etc. Persistent influence of genetic loci on size at birth and adult metabolic syndrome in our study supports a common genetic mechanism partly explaining associations between early development and later cardiometabolic health in various populations, despite marked differences in phenotypic and environmental factors in South Asians.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Accepted version, submitted versio

    Babies of South Asian and European ancestry show similar associations with genetic risk score for birth weight despite the smaller size of South Asian newborns

    No full text
    Size at birth is known to be influenced by various fetal and maternal factors, including genetic effects. South Asians have a high burden of low birth weight and cardiometabolic diseases, yet studies of common genetic variations underpinning these phenotypes are lacking. We generated independent, weighted fetal genetic scores (fGSs) and maternal genetic scores (mGSs) from 196 birth weight-associated variants identified in Europeans and conducted an association analysis with various fetal birth parameters and anthropometric and cardiometabolic traits measured at different follow-up stages (5-6-year intervals) from seven Indian and Bangladeshi cohorts of South Asian ancestry. The results from these cohorts were compared with South Asians in UK Biobank and the Exeter Family Study of Childhood Health, a European ancestry cohort. Birth weight increased by 50.7 g and 33.6 g per SD of fGS (P = 9.1 × 10-11) and mGS (P = 0.003), respectively, in South Asians. A relatively weaker mGS effect compared with Europeans indicates possible different intrauterine exposures between Europeans and South Asians. Birth weight was strongly associated with body size in both childhood and adolescence (P = 3 × 10-5 to 1.9 × 10-51); however, fGS was associated with body size in childhood only (P &lt; 0.01) and with head circumference, fasting glucose, and triglycerides in adults (P &lt; 0.01). The substantially smaller newborn size in South Asians with comparable fetal genetic effect to Europeans on birth weight suggests a significant role of factors related to fetal growth that were not captured by the present genetic scores. These factors may include different environmental exposures, maternal body size, health and nutritional status, etc. Persistent influence of genetic loci on size at birth and adult metabolic syndrome in our study supports a common genetic mechanism that partly explains associations between early development and later cardiometabolic health in various populations, despite marked differences in phenotypic and environmental factors in South Asians.</p
    corecore