10 research outputs found

    Reorganization of lipid domain structure in membranes by a transmembrane peptide: an ESR spin label study on the effect of the Escherichia coli outer membrane protein A signal peptide on the fluid lipid domain connectivity in binary mixtures of dimyristoyl phosphatidylcholine and distearoyl phosphatidylcholine

    Get PDF
    The effect of a transmembrane peptide on the domain structure of a two-component, two-phase lipid bilayer composed of dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) was examined by spin label electron spin resonance (ESR) spectroscopy. The peptide, pOmpA, is the hydrophobic, 25-residue signal sequence of the outer membrane protein A from Escherichia coli. Nitroxide derivatives of the phospholipid DSPC, 16-DSPCSL, and of the pOmpA signal peptide, pOmpA-IASL, were used as probes. The first-derivative lineshapes of the ESR spectra were analyzed using a normalized intensity ratio, R, that gives information on the average sizes of the disconnected fluid domains and their point of connectivity (Sankaram, M.B., D. Marsh, and T.E. Thompson. 1992. Biophys. J. 63:340–349). In the absence of the peptide, the number of fluid lipid domains does not vary with the fraction of lipid that is in the fluid phase, and phase conversion is accomplished solely by changes in the domain size. The phase boundaries of the lipid mixture remain largely unchanged by the presence of the peptide at mole fractions up to 0.02, but both the size and number of the fluid domains is changed, and the point at which they become connected is shifted to lower fractions of the fluid phase. In addition, the number of domains in the presence of the peptide no longer remains constant but increases from a domain density at low fractions of the fluid phase that is much lower than that in the absence of peptide to one that is comparable to the natural state in the absence of peptide at the point of domain connectivity. A simple model is presented for the process of domain fission, where the latter is determined by a balance between the effects of peptide concentration in the fluid domains, the line tension at the domain boundaries, and the distributional entropy of the domains

    Chain order profile in lipid HII phases

    No full text

    A Specific Structural Requirement for Ergosterol in Long-chain Fatty Acid Synthesis Mutants Important for Maintaining Raft Domains in Yeast

    No full text
    Fungal sphingolipids contain ceramide with a very-long-chain fatty acid (C26). To investigate the physiological significance of the C26-substitution on this lipid, we performed a screen for mutants that are synthetically lethal with ELO3. Elo3p is a component of the ER-associated fatty acid elongase and is required for the final elongation cycle to produce C26 from C22/C24 fatty acids. elo3Δ mutant cells thus contain C22/C24- instead of the natural C26-substituted ceramide. We now report that under these conditions, an otherwise nonessential, but also fungal-specific, structural modification of the major sterol of yeast, ergosterol, becomes essential, because mutations in ELO3 are synthetically lethal with mutations in ERG6. Erg6p catalyzes the methylation of carbon atom 24 in the aliphatic side chain of sterol. The lethality of an elo3Δ erg6Δ double mutant is rescued by supplementation with ergosterol but not with cholesterol, indicating a vital structural requirement for the ergosterol-specific methyl group. To characterize this structural requirement in more detail, we generated a strain that is temperature sensitive for the function of Erg6p in an elo3Δ mutant background. Examination of raft association of the GPI-anchored Gas1p and plasma membrane ATPase, Pma1p, in the conditional elo3Δ erg6(ts) double mutant, revealed a specific defect of the mutant to maintain raft association of preexisting Pma1p. Interestingly, in an elo3Δ mutant at 37°C, newly synthesized Pma1p failed to enter raft domains early in the biosynthetic pathway, and upon arrival at the plasma membrane was rerouted to the vacuole for degradation. These observations indicate that the C26 fatty acid substitution on lipids is important for establishing raft association of Pma1p and stabilizing the protein at the cell surface. Analysis of raft lipids in the conditional mutant strain revealed a selective enrichment of ergosterol in detergent-resistant membrane domains, indicating that specific structural determinants on both sterols and sphingolipids are required for their association into raft domains
    corecore