3,649 research outputs found

    The Many Electron Ground State of the Adiabatic Holstein Model in Two and Three Dimensions

    Full text link
    We present the complete ground state phase diagram of the Holstein model in two and three dimension considering the phonon variables to be classical. We first establish the overall structure of the phase diagram by using exact diagonalisation based Monte Carlo (ED-MC) on small lattices and then use a new ``travelling cluster'' approximation (TCA) for annealing the phonon degrees of freedom on large lattices. The phases that emerge include a Fermi liquid (FL), with no lattice distortions, an insulating polaron liquid (PL) at strong coupling, and a charge ordered insulating (COI) phase around half- filling. The COI phase is separated from the Fermi liquid by a regime of phase coexistence whose width grows with increasing electron-phonon coupling. We provide results on the electronic density of states, the COI order parameter, and the spatial organisation of polaronic states, for arbitrary density and electron-phonon coupling. The results highlight the crucial role of spatial correlations in this strong coupling problem.Comment: Final versio

    Einstein static universes are unstable in generic f(R) models

    Full text link
    We study Einstein static universes in the context of generic f(R) models. It is shown that Einstein static solutions exist for a wide variety of modified gravity models sourced by a barotropic perfect fluid with equation of state w=p/rho, but these solutions are always unstable to either homogeneous or inhomogeneous perturbations. Our general results are in agreement with specific models investigated in that past. We also discuss how our techniques can be applied to other scenarios in f(R) gravity.Comment: 7 pages, 2 figures. Minor corrections. Minor changes and references added to match version accepted by Phys. Rev.

    Impact of ATM Service on Customer Perception and Satisfaction of Indian Banks

    Full text link
    . Indian banking sector has completely changed. It has undergone much technological advancement that makes banking easy. Technological advancements are important but at the end what build customer satisfaction is proper management, employee behavior and customer relationship handling. Customer satisfaction is a sum of many variables that is many factors together leads to customer satisfaction. This modern electronic banking has completely changed the concept and functioning of banking system in India. Indian banking has moved from cash economy to cheque to and finally to the use of plastic cards. The customer satisfaction is dependent on customer awareness to a lot of extent. An unaware customer has less knowledge and therefore they cannot use the facilities completely even if they have it at their disposal. Customers prefer public sector banks when they are looking for trust and security and reliability. When it comes to speed, advancements and up gradation people shits from public sector banks to private sector banks. Customer gets satisfied only when they get quality service from the brand they are dealing with. This is very important for the marketers or the service providers as this leads to consumer satisfaction which benefits them and this brings loyalty to the brand enhancing the brand positioning. This research is important because new modern era has made people technology savvy they start their day with technology and end with technology therefore it is important to see the perception of users towards various factors of ATM. This research is conducted to see the highlighting factors that have direct impact on ATM services

    Tumors in von Hippel–Lindau Syndrome: From Head to Toe—Comprehensive State-of-the-Art Review

    Get PDF
    Von Hippel–Lindau syndrome (VHL) is an autosomal-dominant hereditary tumor disease that arises owing to germline mutations in the VHL gene, located on the short arm of chromosome 3. Patients with VHL may develop multiple benign and malignant tumors involving various organ systems, including retinal hemangioblastomas (HBs), central nervous system (CNS) HBs, endolymphatic sac tumors, pancreatic neuroendocrine tumors, pancreatic cystadenomas, pancreatic cysts, clear cell renal cell carcinomas, renal cysts, pheochromocytomas, paragangliomas, and epididymal and broad ligament cystadenomas. The VHL/hypoxia-inducible factor pathway is believed to play a key role in the pathogenesis of VHL-related tumors. The diagnosis of VHL can be made clinically when the characteristic clinical history and findings have manifested, such as the presence of two or more CNS HBs. Genetic testing for heterozygous germline VHL mutation may also be used to confirm the diagnosis of VHL. Imaging plays an important role in the diagnosis and surveillance of patients with VHL. Familiarity with the clinical and imaging manifestations of the various VHL-related tumors is important for early detection and guiding appropriate management. The purpose of this article is to discuss the molecular cytogenetics and clinical manifestations of VHL, review the characteristic multimodality imaging features of the various VHL-related tumors affecting multiple organ systems, and discuss the latest advances in management of VHL, including current recommendations for surveillance and screening

    Theoretical prediction of multiferroicity in double perovskite Y2_2NiMnO6_6

    Full text link
    We put forward double perovskites of the R2_2NiMnO6_6 family (with RR a rare-earth atom) as a new class of multiferroics on the basis of {\it ab initio} density functional calculations. We show that changing RR from La to Y drives the ground-state from ferromagnetic to antiferromagnetic with \uparrow\uparrow\downarrow\downarrow spin patterns. This E^*-type ordering breaks inversion symmetry and generates a ferroelectric polarization of few μC/cm2\mu C/cm^2. By analyzing a model Hamiltonian we understand the microscopic origin of this transition and show that an external electric field can be used to tune the transition, thus allowing electrical control of the magnetization.Comment: 4 pages, 3 figure

    Background independent quantization and wave propagation

    Full text link
    We apply a type of background independent "polymer" quantization to a free scalar field in a flat spacetime. Using semi-classical states, we find an effective wave equation that is both nonlinear and Lorentz invariance violating. We solve this equation perturbatively for several cases of physical interest, and show that polymer corrections to solutions of the Klein-Gordon equation depend on the amplitude of the field. This leads to an effective dispersion relation that depends on the amplitude, frequency and shape of the wave-packet, and is hence distinct from other modified dispersion relations found in the literature. We also demonstrate that polymer effects tend to accumulate with time for plane-symmetric waveforms. We conclude by discussing the possibility of measuring deviations from the Klein-Gordon equation in particle accelerators or astrophysical observations.Comment: 15 pages, minor revision to match PRD versio

    Leakage of old carbon dioxide from a major river system in the Canadian Arctic

    Get PDF
    The Canadian Arctic is warming at an unprecedented rate. Warming-induced permafrost thaw can lead to mobilization of aged carbon from stores in soils and rocks. Tracking the carbon pools supplied to surrounding river networks provides insight on pathways and processes of greenhouse gas release. Here, we investigated the dual-carbon isotopic characteristics of the dissolved inorganic carbon (DIC) pool in the main stem and tributaries of the Mackenzie River system. The radiocarbon (14C) activity of DIC shows export of “old” carbon (2,380 ± 1,040 14C years BP on average) occurred during summer in sampling years. The stable isotope composition of river DIC implicates degassing of aged carbon as CO2 from riverine tributaries during transport to the delta; however, information on potential drivers and fluxes are still lacking. Accounting for stable isotope fractionation during CO2 loss, we show that a large proportion of this aged carbon (60 ± 10%) may have been sourced from biospheric organic carbon oxidation, with other inputs from carbonate weathering pathways and atmospheric exchange. The findings highlight hydrologically connected waters as viable pathways for mobilization of aged carbon pools from Arctic permafrost soils
    corecore