24 research outputs found

    Serum Insulin-Like Growth Factor-1 in Parkinson's Disease; Study of Cerebrospinal Fluid Biomarkers and White Matter Microstructure

    Get PDF
    Background: Growing evidence shows that impaired signaling of Insulin-like Growth Factor-1 (IGF-1) is associated with neurodegenerative disorders, such as Parkinson's disease (PD). However, there is still controversy regarding its proinflammatory or neuroprotective function. In an attempt to elucidate the contribution of IGF-1 in PD, we aimed to discover the relation between serum IGF-1 levels in drug-naïve early PD patients and cerebrospinal fluid (CSF) biomarkers as well as microstructural changes in brain white matter.Methods: The association between quartiles of serum IGF-1 levels and CSF biomarkers (α-synuclein, dopamine, amyloid-β1−42, total tau, and phosphorylated tau) was investigated using adjusted regression models in 404 drug-naïve early PD patients with only mild motor manifestations and 188 age- and sex-matched healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). By using region of interest analysis and connectometry approach, we tracked the white matter microstructural integrity and diffusivity patterns in a subgroup of study participants with available diffusion MRI data to investigate the association between subcomponents of neural pathways with serum IGF-1 levels.Results: PD patients had higher levels of IGF-1 compared to HC, although not statistically significant (mean difference: 3.60, P = 0.44). However, after adjustment for possible confounders and correction for False Discovery Rate (FDR), IGF-1 was negatively correlated with CSF α-synuclein, total and phosphorylated tau levels only in PD subjects. The imaging analysis proved a significant negative correlation (FDR corrected P-value = 0.013) between continuous levels of serum IGF-1 in patients with PD and the connectivity, but not integrity, in following fibers while controlling for age, sex, body mass index, depressive symptoms, education years, cognitive status and disease duration: middle cerebellar peduncle, cingulum, genu and splenium of the corpus callosum. No significant association was found between brain white matter microstructral measures or CSF markers of healthy controls and levels of IGF-1.Conclusion: Altered connectivity in specific white matter structures, mainly involved in cognitive and motor deterioration, in association with higher serum IGF-1 levels might propose IGF-1 as a potential associate of worse outcome in response to higher burden of α-synucleinopathy and tauopathy in PD

    Sex differences in brain structures throughout the lifetime

    Get PDF
    he neuroanatomical characteristics of the brain exhibit variations between females and males, encompassing both healthy and pathological conditions. Bethlehem et al. (2022) recently developed a human brain chart based on Magnetic Resonance Imaging (MRI) data from over 100,000 participants ranging in age from 115 days post-conception to 100 years [2]. This study discovered that males and females have significantly different brain tissue volumes throughout their lives and that these differences can also be seen in the brain growth patterns of people with psychiatric and neurologic conditions. Based on this growth chart trajectory, males have larger brain tissue volumes and more significant variance across MRI phenotypes, compared to females. It is critical to understand the effects of biological sex on brain development as it can significantly affect the physical and mental health of different psychiatric and neurologic patients

    The Role of Multimodal Imaging in Differentiating Vasogenic from Infiltrative Edema: A Systematic Review

    No full text
    Background High-grade gliomas (HGGs) are the most prevalent primary malignancy of the central nervous system. The tumor results in vasogenic and infiltrative edema . Exact anatomical differentiation of these edemas is so important for surgical planning. Multimodal imaging could be used to differentiate the edema type

    A systematic review of resting-state and task-based fmri in juvenile myoclonic epilepsy

    No full text
    Functional neuroimaging modalities have enhanced our understanding of juvenile myoclonic epilepsy (JME) underlying neural mechanisms. Due to its non-invasive, sensitive and analytical nature, functional magnetic resonance imaging (fMRI) provides valuable insights into relevant functional brain networks and their segregation and integration properties. We systematically reviewed the contribution of resting-state and task-based fMRI to the current understanding of the pathophysiology and the patterns of seizure propagation in JME Altogether, despite some discrepancies, functional findings suggest that corticothalamo-striato-cerebellar network along with default-mode network and salience network are the most affected networks in patients with JME. However, further studies are required to investigate the association between JME\u27s main deficiencies, e.g., motor and cognitive deficiencies and fMRI findings. Moreover, simultaneous electroencephalography-fMRI (EEG-fMRI) studies indicate that alterations of these networks play a role in seizure modulation but fall short of identifying a causal relationship between altered functional properties and seizure propagation. This review highlights the complex pathophysiology of JME, which necessitates the design of more personalized diagnostic and therapeutic strategies in this group

    Central nervous system microstructural alterations in Type 1 diabetes mellitus: A systematic review of diffusion Tensor imaging studies

    No full text
    Aims: Type 1 diabetes mellitus (T1DM) is a chronic childhood disease with potentially persistent CNS disruptions. In this study, we aimed to systematically review diffusion tensor imaging studies in patients with T1DM to understand the microstructural effects of this entity on individuals' brains METHODS: We performed a systematic search and reviewed the studies to include the DTI studies in individuals with T1DM. The data for the relevant studies were extracted and a qualitative synthesis was performed. Results: A total of 19 studies were included, most of which showed reduced FA widespread in optic radiation, corona radiate, and corpus callosum, as well as other frontal, parietal, and temporal regions in the adult population, while most of the studies in the juvenile patients showed non-significant differences or a non-persistent pattern of changes. Also, reduced AD and MD in individuals with T1DM compared to controls and non-significant differences in RD were noted in the majority of studies. Microstructural alterations were associated with clinical profile, including age, hyperglycemia, diabetic ketoacidosis and cognitive performance. Conclusion: T1DM is associated with microstructural brain alterations including reduced FA, MD, and AD in widespread brain regions, especially in association with glycemic fluctuations and in adult age

    CSF and blood biomarkers in amyotrophic lateral sclerosis: protocol for a systematic review and meta-analysis

    No full text
    Abstract Background Amyotrophic lateral sclerosis (ALS) is a highly progressive and debilitating neurodegenerative disease, which usually leads to the death of affected individuals within a few years after the onset of symptoms. ALS is currently incurable and very little is known about its pathophysiology. Finding validated biomarkers will help us to advance our understanding of ALS etiology and find better strategies for early diagnosis and management of the disease. The main aim of the present systematic review is to evaluate the concentration of 11 frequently reported biomarkers for ALS in peripheral blood and CSF of patients diagnosed with ALS compared with controls. Methods This systematic review protocol has been established according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol (PRISMA-P) 2015 guideline. We will include all types of observational studies with human subjects that investigated the concentrations of intended biomarkers (amyloid beta (Aβ-42), tau and phosphorylated tau (p-Tau), neurofilaments, S100β, cystatin C, progranulin (PGRN), glial fibrillary acidic protein (GFAP), monocyte chemoattractant protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), TAR DNA-binding protein-43 (TDP43), YKL-40, and CHIT1 in CSF or peripheral blood of ALS patients for initial assessment. Also, we will include case series with a minimum of 10 cases and clinical trials which have measured baseline biomarker levels. Case studies, case reports, reviews, letters, and animal and in vitro studies will be excluded. Multiple electronic databases including Cochrane Library, MEDLINE (PubMed), ISI Web of Science, and EMBASE will be searched to find all eligible articles published since 1980. No language restriction will be applied. All titles and abstracts retrieved by searching information sources will be evaluated independently by two authors against the eligibility criteria. The following information will be extracted from each included study by two independent authors: bibliographic details (first author, study title, year of publication, country), demographics and clinical information (number of patients and controls, type of ALS and controls, study design, age, gender, specimen, biomarkers levels, ALS functional rating scale Revised (ALSFRS-R), duration of disease), and measurements (method, value type, biomarkers levels). We will use the extracted mean and standard deviation (SD) of biomarkers concentrations to calculate the standardized mean difference (SMD) and 95% confidence intervals (CI). The primary outcome measures are the mean difference of biomarker levels between ALS patients and controls, different types of ALS, and ALS patients with genetic mutations. Discussion We will systematically review the literature and analyze studies of biomarker level in CSF and peripheral blood of patients with ALS and controls. The results will help us to identify biomarkers with possible diagnostic and prognostic value. Systematic review registration PROSPERO CRD4201707812

    Association Between Peripheral Inflammation and DATSCAN Data of the Striatal Nuclei in Different Motor Subtypes of Parkinson Disease

    No full text
    The interplay between peripheral and central inflammation has a significant role in dopaminergic neural death in nigrostriatal pathway, although no direct assessment of inflammation has been performed in relation to dopaminergic neuronal loss in striatal nuclei. In this study, the correlation of neutrophil to lymphocyte ratio (NLR) as a marker of peripheral inflammation to striatal binding ratios (SBRs) of DAT SPECT images in bilateral caudate and putamen nuclei was calculated in 388 drug-naïve early PD patients [288 tremor dominant (TD), 73 postural instability and gait difficulty (PIGD), and 27 indeterminate] and 148 controls. NLR was significantly higher in PD patients than in age- and sex-matched healthy controls, and showed a negative correlation to SBR in bilateral putamen and ipsilateral caudate in all PD subjects. Among our three subgroups, only TD patients showed remarkable results. A positive association between NLR and motor severity was observed in TD subgroup. Besides, NLR could negatively predict the SBR in ipsilateral and contralateral putamen and caudate nuclei in tremulous phenotype. Nonetheless, we found no significant association between NLR and other clinical and imaging findings in PIGD and indeterminate subgroups, supporting the presence of distinct underlying pathologic mechanisms between tremor and non-tremor predominant PD at early stages of the disease

    White Matter Microstructure Associated with the Antidepressant Effects of Deep Brain Stimulation in Treatment-Resistant Depression: A Review of Diffusion Tensor Imaging Studies

    No full text
    Treatment-resistant depression (TRD) is a severe disorder characterized by high relapse rates and decreased quality of life. An effective strategy in the management of TRD is deep brain stimulation (DBS), a technique consisting of the implantation of electrodes that receive a stimulation via a pacemaker-like stimulator into specific brain areas, detected through neuroimaging investigations, which include the subgenual cingulate cortex (sgCC), basal ganglia, and forebrain bundles. In this context, to improve our understanding of the mechanism underlying the antidepressant effects of DBS in TRD, we collected the results of diffusion tensor imaging (DTI) studies exploring how WM microstructure is associated with the therapeutic effects of DBS in TRD. A search on PubMed, Web of Science, and Scopus identified 11 investigations assessing WM microstructure in responders and non-responders to DBS. Altered WM microstructure, particularly in the sgCC, medial forebrain bundle, cingulum bundle, forceps minor, and uncinate fasciculus, was associated with the antidepressant effect of DBS in TRD. Overall, the results show that DBS targeting selective brain regions, including the sgCC, forebrain bundle, cingulum bundle, rectus gyrus, anterior limb of the internal capsule, forceps minor, and uncinate fasciculus, seem to be effective for the treatment of TRD
    corecore