41 research outputs found

    High-resolution interrogation of functional elements in the noncoding genome

    Get PDF
    The noncoding genome affects gene regulation and disease, yet we lack tools for rapid identification and manipulation of noncoding elements. We developed a CRISPR screen using ∼18,000 single guide RNAs targeting > 700 kilobases surrounding the genes NF1, NF2, and CUL3, which are involved in BRAF inhibitor resistance in melanoma. We find that noncoding locations that modulate drug resistance also harbor predictive hallmarks of noncoding function. With a subset of regions at the CUL3 locus, we demonstrate that engineered mutations alter transcription factor occupancy and long-range and local epigenetic environments, implicating these sites in gene regulation and chemotherapeutic resistance. Through our expansion of the potential of pooled CRISPR screens, we provide tools for genomic discovery and for elucidating biologically relevant mechanisms of gene regulation.National Institutes of Health (U.S.) (Award F32-DK096822)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049

    Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells

    Get PDF
    The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.National Institutes of Health (U.S.) (Award 1DP1-MH100706)National Institutes of Health (U.S.) (1R01-DK097768

    Rapid neurogenesis through transcriptional activation in human stem cells

    Get PDF
    Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types

    Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis

    Get PDF
    Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late-stage primary tumors were found to target a small set of genes, suggesting that specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top-scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo.National Institutes of Health (U.S.) (Grant R01-CA133404)National Cancer Institute (U.S.) (Grant U54 CA151884)National Cancer Institute (U.S.) (Grant P30-CA14051)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01-DK097768

    Hypoxia as a therapy for mitochondrial disease

    Get PDF
    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Neurological Diseases and Stroke (U.S.) (Grant 5R01DK097768-03

    Transcription control by the ENL YEATS domain in acute leukaemia

    Get PDF
    Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.K. LubinE. Wood

    The Wanderlust of Newborn Neocortical Interneurons

    No full text
    For proper formation of the cerebral cortex, immature neurons must travel from their birthplace within the walls of the lateral ventricle to their final destinations throughout the brain. This process requires active migration over long distances and failure of neurons to properly migrate carries serious consequences for the organism. In humans, disruption of the genes that direct neuronal migration can cause severe mental retardation or even death (Gleeson and Walsh, 2000Go). Understanding the mechanisms for neuronal circuit formation will lead to a better understanding of basic design principles for brain architecture and the development of potential therapies for the treatment of brain disorders caused by aberrant migration

    Improved vectors and genome-wide libraries for CRISPR screening

    No full text
    To the Editor: Genome-wide, targeted loss-of-function pooled screens using the clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 in human and mouse cells provide an alternative screening system to RNA interference (RNAi)1, 2, 3, 4. Previously, we used a genome-scale CRISPR knockout (GeCKO) library to identify loss-of-function mutations conferring vemurafenib resistance in a melanoma model1. However, initial lentiviral delivery systems for CRISPR screening had low viral titer or required a cell line already expressing Cas9, thereby limiting the range of biological systems amenable to screening. We sought to improve both the lentiviral packaging and choice of guide sequences in our original GeCKO library1, where a pooled library of synthesized oligonucleotides was cloned into a lentiviral backbone containing both the Streptococcus pyogenes Cas9 nuclease and the single guide RNA (sgRNA) scaffold. To create a new vector capable of producing higher-titer virus (lentiCRISPRv2), we made several modifications, including removal of one of the nuclear localization signals, human-codon optimization of the remaining nuclear localization signal and P2A bicistronic linker sequences, and repositioning of the U6-driven sgRNA cassette (Fig. 1a). These changes resulted in an approximately tenfold increase in functional viral titer over that of lentiCRISPRv1 (ref. 1; Fig. 1b).Broad Institute. Klarman Cell Observatory (postdoctoral fellowship)Massachusetts Institute of Technology. Simons Center for the Social Brain (postdoctoral fellowship)National Institutes of Health (U.S.) (NIMH, Director’s Pioneer Award (5DP1-MH100706)National Institutes of Health (U.S.) (Transformative R01 grant (5R01-DK097768)
    corecore