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Abstract

The noncoding genome affects gene regulation and disease, yet we lack tools for rapid 

identification and manipulation of noncoding elements. We develop a CRISPR screen employing 

~18,000 sgRNAs targeting >700 kb surrounding the genes NF1, NF2, and CUL3, which are 

involved in BRAF inhibitor resistance in melanoma. We find that noncoding locations that 

modulate drug resistance also harbor predictive hallmarks of noncoding function. With a subset of 

regions at the CUL3 locus, we demonstrate that engineered mutations alter transcription factor 

occupancy and long-range and local epigenetic environments, implicating these sites in gene 

regulation and chemotherapeutic resistance. Though our expansion of the potential of pooled 

CRISPR screens we provide tools for genomic discovery and for elucidating biologically relevant 

mechanisms of gene regulation.

Pooled CRISPR mutagenesis identifies functional elements in the noncoding genome.

More than 98% of the human genome does not code for proteins, however, unlike the coding 

genome there exists no overarching framework to translate noncoding genomic sequence 

into functional elements (1, 2). Evidence from genome-wide association studies (GWAS) 

suggests many noncoding regions are critical for human health (3, 4). The significance of 

these associations, however, has been difficult to assess, in part because we lack the tools to 

determine which variants alter functional elements. Molecular hallmarks, such as epigenetic 
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state, chromatin accessibility, transcription factor binding, and evolutionary conservation, 

correlate with putative functional elements in the noncoding genome and can predict 

regulatory function (2, 5). However, these predictions largely bypass regions lacking 

hallmarks, and it is difficult to ascertain what hallmarks play a correlative or truly causal role 

in function or phenotype (6, 7). Efforts to determine causality have employed preselected 

DNA fragments with expression serving as a proxy for function (8) but these methods lack 

the local chromatin context and broader regulatory interactions. Thus there is a need for 

systematic approaches to sift through noncoding variants and determine if and how they 

affect phenotypes within a native biological context.

For this purpose, we designed a high-throughput method using pooled CRISPR (Clustered 

regularly-interspaced short palindromic repeat)-Cas9 single guide RNA (sgRNA) libraries to 

screen noncoding genomic loci to identify functional regions related to phenotype and gene 

regulation. Previous applications of CRISPR screens within the noncoding genome have 

focused on specific functional elements (e.g. miRNAs, transcription factor binding sites) or 

required fluorescent reporters (9–12). Here, we comprehensively assay a total of 715 kb of 

sequence surrounding three different genes by performing unbiased mutagenesis to identify 

functional elements relevant to cancer drug resistance.

Vemurafenib inhibits BRAF proteins carrying the V600E mutation, found in 50–70% of 

melanomas (13). Resistance to vemurafenib arises within months in almost all melanoma 

patients (14) and surviving tumor cells display increased malignancy that rapidly leads to 

lethality (15). A genome-scale CRISPR screen found that loss-of-function mutations in NF1, 

NF2, and CUL3 result in vemurafenib resistance (16). To explore if mutations in the 

noncoding regions around these three genes could similarly impact drug resistance, we 

designed three sgRNA libraries tiling across 100 kb regions 5´ and 3´ of each gene’s major 

isoforms (Fig. 1A). For each library, we synthesized the sgRNAs as a pool (6,682 for NF1, 

6,934 for NF2, and 4,699 for CUL3; 18,315 sgRNAs total) and cloned them into a lentiviral 

vector (fig. S1). We transduced A375 human melanoma cells, which carry the BRAF 

mutation, with the sgRNA libraries at a low multiplicity of infection and cultured them in 

2uM vemurafenib or control (DMSO) for 14 days. Using deep sequencing, we counted the 

representation of sgRNAs in the library in both conditions (Fig. 1B–D) and identified 

vemurafenib-enriched sgRNAs as those enriched >4 standard deviations from the control 

distribution (fig. S2).

Overall, most sgRNAs were depleted after treatment with vemurafenib, which is expected 

since vemurafenib targets the oncogene addiction that drives A375 growth (Fig. 1E). 

However, in all three libraries, we found a small group of sgRNAs that were enriched after 

vemurafenib treatment (log2 ratio of Vemu/Control > 0), with the CUL3 library having the 

largest percentage of enriched sgRNAs. As we also included a small number of sgRNAs 

targeting the coding region of each gene, most sgRNAs targeting coding regions (70 – 80%) 

were enriched, as expected (fig. S3A). However, amongst the sgRNAs targeting noncoding 

regions, approximately 4-fold more sgRNAs were enriched in the CUL3 library than in the 

NF1 or NF2 libraries (7.2% in CUL3, 1.7% in NF1, and 2.1% in NF2), suggesting the 

presence of more gene regulatory elements in the noncoding regions flanking the gene (fig. 

S3A). To determine if this increase in putative gene regulatory elements in the 200 kb region 
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surrounding CUL3 is also reflected in human gene expression and genotyping data, we 

queried the Genotype-Tissue Expression (GTEx) database (7,051 tissue samples from 449 

donors). Indeed, we found that CUL3 had the largest number of cis-expression quantitative 

trait loci (eQTL) (n = 161 eQTLs, mean effect size = −0.21), and the region targeted by the 

sgRNA library overlaps with a large number of these eQTLs (fig. S3B) (17). We thus chose 

to focus our downstream analysis and validation efforts on CUL3.

We visualized the enriched sgRNAs in a genome browser-style view (Figs. 1F, S4A, B). We 

found that a higher percentage of sgRNAs targeting gene-proximal elements were enriched 

compared to other noncoding regions (Fig. 1G) and greater enrichment for sgRNAs targeting 

noncoding elements on the 5´ side of the gene than for those on the 3´ side (fig. S4C).

To test if regions targeted by enriched sgRNAs from the screen physically interact with the 

CUL3 promoter via chromatin looping (18), we created three independent chromosome 

conformation capture (3C) libraries (Fig. 2A) (19). We quantified the interaction frequency 

for each site across the ~200 kb region (43) and found that regions on the 5´ side of CUL3 
tend to interact more strongly with the promoter. Regions with higher 3C interaction contain, 

on average, more vemurafenib-enriched sgRNAs (Fig. 2B).

Since chromatin accessibility can identify regulatory regions (20, 21), we performed Assay 

of Transposase-Accessible Chromatin sequencing (ATAC-seq) in A375 melanoma, MCF7 

breast adenocarcinoma and U87 glioblastoma cells (Fig. 2C). Overall, we found higher 

sgRNA enrichment near A375-specific ATAC peaks than near those from other cell types, 

which was replicated with DNAseI hypersensitivity data (Figs. 2D–E, S5). These regions 

suggest the presence of cell type-specific enhancers (22, 23). Even though the accessible 

peaks overlap with enriched sgRNA sites, the chromatin accessibility data by itself only 

predicts a small fraction of the total number of enriched sgRNA sites (table S1).

Since evolutionary conservation varies widely across the noncoding genome, we sought to 

test whether regions exhibiting higher levels of conservation harbor more enriched sgRNAs. 

We examined phastCons conservation scores among primates, placental mammals, and 

vertebrates over the CUL3 locus (Fig. 2F) (24). Overall, enriched sgRNAs are ~1.8-fold 

more likely to be found near peaks of primate conservation and are ~1.7-fold less likely to 

be found near conservation peaks among mammals and vertebrates (Figs. 2G, S5). In 

contrast, the genomic sites of sgRNAs targeting coding regions of CUL3 do not demonstrate 

differential conservation (phastCons probability ~ 0.95 in primates, mammals and 

vertebrates). This observation supports recent findings that enhancers evolve rapidly in a 

lineage- or species-specific manner and conserved enhancers between mammals tend to be 

rare (25).

To confirm that mutations in these specific noncoding regions were mediated by CUL3 and 

lead to altered drug resistance, we transduced cells with individual sgRNAs having at least 

one other enriched sgRNA within 500 bp (Fig. 3A). We validated that the sgRNA created 

mutations at the intended target sites (fig. S6) and found that 24 out of the 25 sgRNAs 

resulted in decreased CUL3 expression relative to non-targeting sgRNAs (Fig. 3B). As 

expected, there is a negative correlation between CUL3 gene expression and vemurafenib 
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resistance (r = −0.54, p = 0.005) (Fig. 3C) and increased vemurafenib resistance can be 

reversed by restoring CUL3 expression (fig. S7).

Next, we surveyed changes in post-translational histone modifications at each target site (fig. 

S8A) (43). With target sites near the promoter, we found a 56% average decrease of 

H3K4me3 after editing (p = 7×10−4, n = 9 sites) (Fig. 3D), consistent with the reduced gene 

expression. At distal sites, we found a 41% average decrease in H3K27ac (p = 0.02, n = 7 

sites) after editing and no significant change in H3K4me2 (p = 0.82, n = 7 sites) (Fig. 3D), 

although a subset of H3K4me2 levels decreased after editing (fig. S8B). We also found that 

mutagenesis of a ~22 kb distal histone acetyl-transferase (p300) binding site that has a 

strong 3C promoter interaction results in a 75% decline of promoter H3K27ac and a 50% 

decrease in CUL3 expression (fig. S9, 43).

By examining regions targeted by enriched sgRNAs, we found individual loci containing the 

canonical transcription factor binding motifs for Yin Yang 1 (YY1), Zinc Finger Protein 263 

(ZNF263), CCCTC-binding factor (CTCF) and activation protein 1 (AP-1) complex which 

were disrupted after editing (Figs. 4A–D, S10). We found that mutations within these 

binding sites abrogate transcription factor recruitment leading to loss of CUL3 expression 

(Figs. 4E–H). For example, specific sgRNAs that target near a YY1 ChIP peak (Fig. 4B) 

disrupt the YY1 motif (fig. S11) and vemurafenib treatment selects for mutations that are 

more deleterious to the binding site (fig. S12). Although both sgRNAs targeting near the site 

decrease YY1 binding, the sgRNA whose cut site overlaps the motif more efficiently 

disrupts YY1 binding (67% vs. 26%) (Fig. 4E). In addition, mutagenesis by either sgRNA 

significantly decreases CUL3 expression. Similarly, 2 sgRNAs in the first intron of CUL3 
spaced 30 bp apart overlap a ZNF263 ChIP-seq peak (Fig. 4B). Both result in a significant 

decrease in ZNF263 occupancy and in CUL3 expression (Fig. 4F).

Although we observed a bias in the presence of regulatory elements 5´ of the transcription 

start site, we did find several enriched sgRNAs downstream of CUL3 (Fig. 4C, D) (43). One 

sgRNA cuts inside the core motif of CTCF (Fig. 4C). After editing, CTCF occupancy is 

decreased by 45% with a concurrent 30% decrease in CUL3 expression (Fig. 4G). For AP-1, 

a heterodimer of FOS and JUN, editing at either of two nearby sites decreases FOS and JUN 

binding compared with control cells and decreases CUL3 expression by ~25% (Fig. 4H). 

Overall, as in the pooled screen, transcription factor binding sites located on the 3´ side 

exhibit weaker effects on gene expression than those located on the 5´ side.

Thus we show how a Cas9-mediated systematic dissection of noncoding loci can identify 

functional elements involved in gene regulation and cancer drug resistance. In combination 

with other genome-wide assays, we demonstrate high-throughput identification of regions 

where changes in chromatin context and transcription factor binding are causally linked to 

loss of gene expression and a disease-relevant phenotype. This approach is generalizable, 

and we anticipate that the extension of pooled CRISPR screens into the noncoding genome 

will provide further insights and methods for unbiased interrogation of the genome.
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Figure 1. CRISPR mutagenesis of noncoding regions flanking three genes involved in BRAF 
inhibitor resistance
A) Design of sgRNA libraries targeting 100 kb 5` and 100 kb 3` of a gene. The sgRNAs are 

array synthesized and cloned into a lentiviral vector. BRAF mutant cells are transduced with 

the pooled lentivirus and treated with vemurafenib (Vemu) or DMSO (Control). A deep 

sequencing readout identifies sgRNAs enriched after treatment with vemurafenib.

Scatterplot of normalized read counts (average of the 2 infection replicates) for B: NF1, C: 

NF2, D: CUL3 sgRNAs at Day 0 (x axis) and Day 14 (y axis) Read counts from control 

(gray) and vemurafenib-treated cells (red) are shown relative to 4 standard deviations of the 

control cell distribution (dotted line) with the percentage of enriched sgRNAs in 

vemurafenib (>4 s.d.).

E) Distribution of log2 ratio of the normalized read count for each sgRNA in vemurafenib to 

its normalized read count in control (minimum of the 2 infection replicates).

F) All CUL3 sgRNAs plotted by hg19 coordinates and the percent expression of the two 

most highly expressed CUL3 isoforms (Primary, Alt.). For vemurafenib-enriched sgRNAs, 

the log2 enrichment over control (minimum value of 2 replicate screens) is plotted (red); 

non-enriched sgRNAs are indicated in blue.

G) Percent of enriched sgRNAs by genomic category.
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Figure 2. Characteristics of functional noncoding elements at the CUL3 locus
A) Plot of 3C interaction frequencies with the CUL3 promoter in A375 cells. Data points 

represent independent libraries generated with BglII, EcoRI, and HindIII restriction 

enzymes. The grey curve shows a smoothed estimate of interaction frequency.

B) Average enrichment of sgRNAs (log2 ratio of vemurafenib/DMSO reads) near 3C sites 

with specified minimum interaction frequency with the CUL3 promoter (43).

C) An example of enriched sgRNAs (red) that overlap with a melanoma-specific region of 

open chromatin. ATAC-seq in A375 melanoma (orange), MCF-7 breast cancer (purple) and 

U-87 glioblastoma (blue) and Melanoma DNAse I hypersensitivity sequencing (green, 

ENCODE/Colo-829). Loci investigated relative to CUL3 is shown at top (yellow). Scale bar: 

500 bp.

D) Fold enrichment of enriched sgRNAs near ATAC-seq open chromatin peaks in 

melanoma, breast cancer and glioblastoma cell lines.

E) Fold enrichment of enriched sgRNAs near DNAse I HS-seq open chromatin peaks in 

melanoma, breast cancer and glioblastoma cell lines.

F) An example of enriched sgRNAs (red) that coincide with regions that show greater 

primate-specific conservation than placental mammal and vertebrate conservation. Loci 

investigated relative to CUL3 is shown at top (yellow). Scale bar: 200 bp.
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G) Fold enrichment of enriched sgRNAs near phastCons peaks in primates, placental 

mammals and vertebrates.
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Figure 3. Noncoding mutations impact CUL3 expression and histone modifications
A) Criteria selecting 25 sgRNAs targeting noncoding regions for validation.

B) CUL3 RNA expression (normalized to non-targeting sgRNAs) after transduction with 

lentivirus expressing non-targeting (triangles), noncoding region-targeting (colored circles) 

and coding region-targeting (squares) sgRNAs.

C) Relationship between CUL3 expression and cell survival after vemurafenib. Linear fit is 

to noncoding sgRNAs only (rnoncoding = −0.54, p = 0.005) and does not include coding 

region-targeting or non-targeting sgRNAs.

D) Percent change in average H3K4me3 chromatin immunoprecipitation (ChIP) for all 

validation sgRNAs within 1 kb of the transcription start site (TSS) of CUL3 (left). Percent 

change in average H3K27ac and average H3K4me2 ChIP for all validation sgRNAs >1 kb 

from the TSS of CUL3 (right).
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Figure 4. Cas9 mutagenesis disrupts predicted transcription factors and DNA binding proteins 
at target sites of vemurafenib-enriched sgRNAs
A–D) sgRNA target locations in relation to predicted binding sites.

E–H) Change in transcription factor/DNA binding protein occupancy around cleavage site 

and change in CUL3 expression. Both measurements are normalized to cells transduced with 

non-targeting sgRNAs.
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