7 research outputs found

    The Veldkamp Space of Two-Qubits

    No full text
    Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, W(2), it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements - the so-called Veldkamp space of W(2). An intriguing novelty is the recognition of (uni- and tri-centric) triads and specific pentads of the Pauli operators in addition to the ''classical'' subsets answering to geometric hyperplanes of W(2)

    Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions

    No full text
    Given a finite associative ring with unity, R, any free (left) cyclic submodule (FCS) generated by a unimodular (n + 1)-tuple of elements of R represents a point of the n-dimensional projective space over R. Suppose that R also features FCSs generated by (n + 1)-tuples that are not unimodular: what kind of geometry can be ascribed to such FCSs? Here, we (partially) answer this question for n = 2 when R is the (unique) non-commutative ring of order eight. The corresponding geometry is dubbed a ''Fano-Snowflake'' due to its diagrammatic appearance and the fact that it contains the Fano plane in its center. There exist, in fact, two such configurations – each being tied to either of the two maximal ideals of the ring – which have the Fano plane in common and can, therefore, be viewed as twins. Potential relevance of these noteworthy configurations to quantum information theory and stringy black holes is also outlined

    Projective Ring Line of a Specific Qudit

    Full text link
    A very particular connection between the commutation relations of the elements of the generalized Pauli group of a dd-dimensional qudit, dd being a product of distinct primes, and the structure of the projective line over the (modular) ring \bZ_{d} is established, where the integer exponents of the generating shift (XX) and clock (ZZ) operators are associated with submodules of \bZ^{2}_{d}. Under this correspondence, the set of operators commuting with a given one -- a perp-set -- represents a \bZ_{d}-submodule of \bZ^{2}_{d}. A crucial novel feature here is that the operators are also represented by {\it non}-admissible pairs of \bZ^{2}_{d}. This additional degree of freedom makes it possible to view any perp-set as a {\it set-theoretic} union of the corresponding points of the associated projective line

    Projective Ring Line Encompassing Two-Qubits

    Full text link
    The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators - generalized Pauli matrices - characterizing two-qubit systems. The relevant sub-configuration consists of 15 points each of which is either simultaneously distant or simultaneously neighbor to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbor/distant answering, respectively, to the operational ones of commuting/non-commuting. This remarkable configuration can be viewed in two principally different ways accounting, respectively, for the basic 9+6 and 10+5 factorizations of the algebra of the observables. First, as a disjoint union of the projective line over GF(2) x GF(2) (the "Mermin" part) and two lines over GF(4) passing through the two selected points, the latter omitted. Second, as the generalized quadrangle of order two, with its ovoids and/or spreads standing for (maximum) sets of five mutually non-commuting operators and/or groups of five maximally commuting subsets of three operators each. These findings open up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and give their numerous applications a wholly new perspective.Comment: 8 pages, three tables; Version 2 - a few typos and one discrepancy corrected; Version 3: substantial extension of the paper - two-qubits are generalized quadrangles of order two; Version 4: self-dual picture completed; Version 5: intriguing triality found -- three kinds of geometric hyperplanes within GQ and three distinguished subsets of Pauli operator

    The Veldkamp space of multiple qubits

    Full text link
    We introduce a point-line incidence geometry in which the commutation relations of the real Pauli group of multiple qubits are fully encoded. Its points are pairs of Pauli operators differing in sign and each line contains three pairwise commuting operators any of which is the product of the other two (up to sign). We study the properties of its Veldkamp space enabling us to identify subsets of operators which are distinguished from the geometric point of view. These are geometric hyperplanes and pairwise intersections thereof. Among the geometric hyperplanes one can find the set of self-dual operators with respect to the Wootters spin-flip operation well-known from studies concerning multiqubit entanglement measures. In the two- and three-qubit cases a class of hyperplanes gives rise to Mermin squares and other generalized quadrangles. In the three-qubit case the hyperplane with points corresponding to the 27 Wootters self-dual operators is just the underlying geometry of the E6(6) symmetric entropy formula describing black holes and strings in five dimensions.Comment: 15 pages, 1 figure; added references, corrected typos; minor change

    Geometric Hyperplanes of the Near Hexagon L_3 times GQ(2, 2)

    Full text link
    Having in mind their potential quantum physical applications, we classify all geometric hyperplanes of the near hexagon that is a direct product of a line of size three and the generalized quadrangle of order two. There are eight different kinds of them, totalling to 1023 = 2^{10} - 1 = |PG(9, 2)|, and they form two distinct families intricately related with the points and lines of the Veldkamp space of the quadrangle in question.Comment: 10 pages, 5 figures and 2 tables; Version 2 - more detailed discussion of the properties of hyperplane
    corecore