89 research outputs found

    Optimizing the Mixing Proportion with Neural Networks Based on Genetic Algorithms for Recycled Aggregate Concrete

    Get PDF
    This research aims to optimize the mixing proportion of recycled aggregate concrete (RAC) using neural networks (NNs) based on genetic algorithms (GAs) for increasing the use of recycled aggregate (RA). NN and GA were used to predict the compressive strength of the concrete at 28 days. And sensitivity analysis of the NN based on GA was used to find the mixing ratio of RAC. The mixing criteria for RAC were determined and the replacement ratio of RAs was identified. This research reveal that the proposed method, which is NN based on GA, is proper for optimizing appropriate mixing proportion of RAC. Also, this method would help the construction engineers to utilize the recycled aggregate and reduce the concrete waste in construction process

    Developing a mathematical model of intracellular Calcium dynamics for evaluating combined anticancer effects of afatinib and RP4010 in esophageal cancer

    Get PDF
    Targeting dysregulated Ca2+ signaling in cancer cells is an emerging chemotherapy approach. We previously reported that store-operated Ca2+ entry (SOCE) blockers, such as RP4010, are promising antitumor drugs for esophageal cancer. As a tyrosine kinase inhibitor (TKI), afatinib received FDA approval to be used in targeted therapy for patients with EGFR mutation-positive cancers. While preclinical studies and clinical trials have shown that afatinib has benefits for esophageal cancer patients, it is not known whether a combination of afatinib and RP4010 could achieve better anticancer effects. Since TKI can alter intracellular Ca2+ dynamics through EGFR/phospholipase C-γ pathway, in this study, we evaluated the inhibitory effect of afatinib and RP4010 on intracellular Ca2+ oscillations in KYSE-150, a human esophageal squamous cell carcinoma cell line, using both experimental and mathematical simulations. Our mathematical simulation of Ca2+ oscillations could fit well with experimental data responding to afatinib or RP4010, both separately or in combination. Guided by simulation, we were able to identify a proper ratio of afatinib and RP4010 for combined treatment, and such a combination presented synergistic anticancer-effect evidence by experimental measurement of intracellular Ca2+ and cell proliferation. This intracellular Ca2+ dynamic-based mathematical simulation approach could be useful for a rapid and cost-effective evaluation of combined targeting therapy drugs

    Laparoscopic Renal Denervation System for Treating Resistant Hypertension: Overcoming Limitations of Catheter-Based Approaches

    Get PDF
    Goal: In a pivotal clinical trial, the percutaneous catheter-based renal denervation system developed to treat resistant hypertension did not show effectiveness in reducing blood pressure because of its fundamental limitation to ablate deeper nerves present around the renal artery. Methods: We propose a new renal denervation strategy called laparoscopicdenervation system (LDS) based-on laparoscopy procedure to ablate the renal nerves completely but inhibit the thermal arterial damage.The system has flexible electrodes to bend around the arterial wall to ablate nervesThe simulation study using validated in-silico models evaluated the heat distributionon the outer arterial wall,and an acute animal study (swine model) was conducted to demonstrate the feasibility of LDS in vivo. Results: The simulation studyconfirmedthat LDS could localize the heat distributionbetween the electrode and the outer arterial wall. In the animal study, we could maximize nerve denervation by the localizing ablation energy within the renal nerves and achieve nerve denaturationand decrease in neural density by 20.78% (P < 0.001), while maintaining a constant tip temperature of 65 degrees C for the duration of 70 s treatment. The study confirmed intact lumen artery through histological analysis and acute reduction in systolic blood pressure by 9.55 mmHg (p < 0.001) Conclusion: The LDS presented here has potential to effectively and safely ablate the renal nerves, independent of anatomical variation and nerve distribution, to control hypertension in real clinical conditions. Significance: LDS approach is innovative, inventive, and presents a novel technique totreat hypertension.11Yscopu

    LsrR-Mediated Quorum Sensing Controls Invasiveness of Salmonella typhimurium by Regulating SPI-1 and Flagella Genes

    Get PDF
    Bacterial cell-to-cell communication, termed quorum sensing (QS), controls bacterial behavior by using various signal molecules. Despite the fact that the LuxS/autoinducer-2 (AI-2) QS system is necessary for normal expression of Salmonella pathogenicity island-1 (SPI-1), the mechanism remains unknown. Here, we report that the LsrR protein, a transcriptional regulator known to be involved in LuxS/AI-2-mediated QS, is also associated with the regulation of SPI-1-mediated Salmonella virulence. We determined that LsrR negatively controls SPI-1 and flagella gene expressions. As phosphorylated AI-2 binds to and inactivates LsrR, LsrR remains active and decreases expression of SPI-1 and flagella genes in the luxS mutant. The reduced expression of those genes resulted in impaired invasion of Salmonella into epithelial cells. Expression of SPI-1 and flagella genes was also reduced by overexpression of the LsrR regulator from a plasmid, but was relieved by exogenous AI-2, which binds to and inactivates LsrR. These results imply that LsrR plays an important role in selecting infectious niche of Salmonella in QS dependent mode

    Changes in lower limb muscle activity based on angle of ankle abduction during lunge exercise

    No full text

    Ubiquitous Computing Services Discovery and Execution Using a Novel Intelligent Web Services Algorithm

    No full text
    Ubiquitous Computing makes it possible to determine in real time the locationand situations of service requesters in a web service environment as it enables access tocomputers at any time and in any place. Though research on various aspects of ubiquitouscommerce is progressing at enterprises and research centers, both domestically andoverseas, analysis of a customer’s personal preferences based on semantic web and rulebased services using semantics is not currently being conducted. This paper proposes aUbiquitous Computing Services System that enables a rule based search as well assemantics based search to support the fact that the electronic space and the physical spacecan be combined into one and the real time search for web services and the construction ofefficient web services thus become possible

    Operation Characteristics for the Superconducting Arc-Induction Type DC Circuit Breaker

    No full text
    The multi-terminal direct current network is expected to commercialize while carrying out projects related to DC power systems worldwide. Accordingly, it is necessary to develop a DC circuit breaker required for the DC power system. A DC circuit breaker should be developed to protect the DC power system and the consumer from the transient state on the line in any case. Currently, the use of power semiconductors increases the performance of DC circuit breakers. However, power semiconductors are expensive and suffer series of losses from frequent failures. Therefore, the DC circuit breaker must have a reliable, stable, and inexpensive structure. We proposed a new type of arc-induction type DC circuit breaker. It consists of a mechanical blocking contact, an induction needle and a superconducting magnet. It blows the arc with an induction needle using the Lorentz force according to the high magnetic field of the superconducting magnet. The arc-induction needle absorbs the arc and flows through the ground wire to the ground to extinguish the arc. We established this principle of arc induction as a mathematical model. In addition, the Maxwell program was used to secure data of electric and magnetic fields and apply them to mathematical models. The results obtained through numerical analysis were analyzed and compared. As a result, we confirmed that the magnitude of the force exerted on the electrons between the mechanical contacts with the superconducting magnets increased about 1.41 times and reasoned the arc-induction phenomenon out numerically
    corecore