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This research aims to optimize the mixing proportion of recycled aggregate concrete (RAC) using neural networks (NNs) based
on genetic algorithms (GAs) for increasing the use of recycled aggregate (RA). NN and GA were used to predict the compressive
strength of the concrete at 28 days. And sensitivity analysis of the NN based on GA was used to find the mixing ratio of RAC. The
mixing criteria for RAC were determined and the replacement ratio of RAs was identified. This research reveal that the proposed
method, which is NN based on GA, is proper for optimizing appropriate mixing proportion of RAC. Also, this method would help
the construction engineers to utilize the recycled aggregate and reduce the concrete waste in construction process.

1. Introduction

Recycled aggregate concrete (RAC) has been widely stud-
ied in Korea as part of the effort to preserve natural
resources and prevent environmental disruption. Currently,
many researchers have studied about application of recycled
aggregates (RAs) as the base or subbase material in road
construction [1] and as a component of high-strength/high-
performance concrete [2]. However, RAs have an unavoidable
major defect, that is, microcracks and impurities which,
occur in the crushing process of original concrete to produce
RAs. These microcracks and impurities lead to RAs with
higher water absorption, lower specific gravity, and lower
durability than natural aggregates (NAs) [3-5]. These RAs
have influence on the properties of concrete, such as their
workability, shrinkage, tensile strength, compressive strength,
and durability in fresh and hardened concrete states.
Therefore, it should be more effective to determine the
mixing proportion for RAC than to attempt to improve the
quality of the RAs. The quality of concrete, as determined
by its compressive strength and durability, depends on the

mixing proportions of the concrete and the mixing prepa-
ration technique, as well as on the quality of the concrete
components [6]. But to date, the mixing proportions of
RAC have been determined by experience and knowledge
of previous research based on NAs [6]. However, it is
inappropriate to determine the mixing proportions of RAC
by this way because of the properties of RAs (high water
absorption, low specific gravity, and microcracking). Because
interrelationships between RAs and the other components
of concrete are complex, old cement mortar that does not
hydrate on the surface of RAs when attached much, and when
using the RAs, this material progresses hydration with reac-
tions with water again. This case, heat of hydration increases
because cement amount that reacts actually becomes more
than the designed cement amount. Also, a compression,
tension, shearing strength, and so forth of RAC should be
bigger than normal concrete by augmented cement content
theoretically, but actuality is not so, as their interactions are
difficult to express by a mathematical (mathematical formula)
model [7, 8] and will consume a lot of time. That is, a
quantity of all mixing elements should be crystallized again



by an amount of old cement mortar that does not perform
hydration reaction when attached on the surface of RAs.

Therefore, it applied a neural network (NN) and a genetic
algorithm (GA) to the mixing of RAC as a tool for the solution
of those problems. This research proposes criteria for optimal
mixing design of a RAC by sensitivity analysis of NN. Also,
with designed mixing proportion, it is able to estimate the
compressive strength of RAC. Changes in the quality of the
RAC according to the mixing ratio of its components were
verified by experimental research in the laboratory, and the
quality of RAC predicted by the applied NN was compared
with the experimental data.

2. Methodology

This research was divided into three main phases (Figure 1).
The first step is the processes that make a new data of a variety
of kinds for applying to NN-GA model. The second step is the
construction of NN model. The third step is applying GA to
constructed NN for running of the optimum of NN, and then
applying the new data made in first step to the optimized NN.
And sensitivity analysis was performed in the constructed
NN-GA model.

Generally, the NN is designed for the specific set of
input as well as output. The number of inputs and outputs
is not restricted, which is one advantage of NN [9, 10].
Then, the number of hidden layer and the number of hidden
node are defined. But a large amount of time must be
spent in determining them, which is one drawback of NN,
because it actually requires some trial-and-error process [11-
13]. Therefore, to pare down trifling by repeat of trial-and-
error process [14] and to systematic access method [15], the
GA was applied to the NN to optimize each parameter of the
NN (Figure 1).

3. Experimental Design

3.1. Component Materials. The constituents of the concrete
used in this study included ASTM C 150 Type I Portland
cement, the specific gravity of which is 3.16, recycled coarse
aggregates (RCA), and recycled fine aggregates (RFA), made
using first-class aggregates produced from a RAs manufac-
turing corporation, which is BLUESTONE Corporation in
South Korea (water absorption ratios: RFA < 5%, RCA < 3%;
specific gravity: RFA > 2.2, RCA > 2.2-KS F 2527, 2574; Korea
Standard). The physical properties of the NAs and RAs are
shown in Table 1. When it used such RAs because impurities
stick much on its surface by production process, compressive
strength of RAC decreased [16, 17]. Therefore, in this research,
the used RAs were washed in water to remove the effect of
impurities on concrete strength. RAs that were wash in water
were used after uncover for 48 hours in air.

3.2. Mixing of Concrete. The American Concrete Institute
(ACI) Standard 211.1, “Recommended Practice for Selecting
Proportions for Normal-Weight Concrete,” was used to pro-
portion the concrete mixtures. The RFA was replaced at 0%,
10%, 30%, 50%, 70%, and 100% (by weight), and the RCA
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was replaced at 0%, 30%, 50%, and 100% (by weight). Table 2
shows a sample of the specified concrete mixing proportions
in terms of the replacing ratios for RCA and RFA. The data in
Table 2 is used to train the neural networks.

Admixtures, unit water content, unit cement content, and
designed compressive strength are as follows:

(i) water/cement ratio (W/C): 50%;
(ii) unit water content: 175 kg/ m?;
(iii) unit cement content: 350 kg/ m’;

(iv) designed compressive strength: 35 MPa.

All test procedures in sieve analysis, specific gravities, and
the absorptions of aggregates conformed to ASTM Standards
C 136, C 127, and C 128, respectively. Making and curing
the concrete and the compressive strength of the cylindrical
concrete specimens conformed to ASTM C 192 and ASTM C
39, respectively.

3.3. Casting Test Specimens. Seventy-two casts, for each of
which five cylindrical (28-day) concrete specimens were cast
(i.e., a total of 360), were prepared for mechanical testing. A
cylindrical concrete specimen with a diameter of 100 mm and
a depth of 200 mm (¢ 100 x 200 mm) was used to test the
compressive strengths of the samples of RAC. The specimens
were casted after the initial curing for 24 hours. Curing was
maintained for 28 days in constant temperature and humidity
chamber, and the uniaxial compressive test was performed on
day 28 by UTM (Universal Testing Machine). The slump of
the fresh concrete and the air content were also measured. In
Table 2, each data point for slump value and air content rate
represents a single test result, and the compressive strength
value represents the average value of three test results, after
the highest and lowest values among five tests were excluded.
To train and test the NN, 216 data sets were used.

3.4. Verifying the Experimental Results. Figure 2 shows a
histogram of compressive strength, which is the result of
description statistics about experimental data by statistical
package for social science. The test results for the cylindrical
concrete specimens show a normal distribution, with a mean
of 33.75 MPa and a standard deviation of 2.82 MPa. The range
of strengths obtained by testing agreed well with the range of
the normal distribution curve according to ACI 214-77 [18].
Up to this point in the research, the authors used the mixing
proportions for normal concrete as the mixing proportions
for the RAC to obtain compressive strength data for the RAC.
An average RAC strength was achieved when the mixing
proportions of normal concrete with strength of 35 MPa were
used for the RAC. To achieve a suitable slump and air content
that would allow effective workability of the RAC under the
conditions of this experiment, the proper design strength for
the RAC should be 33 to 34 MPa. Therefore, as described in
Section 4, the range of output values used for the strength
estimation and sensitivity analysis of RAC performed in this
research was chosen to be 33 to 34 MPa.
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FIGURE I: The three steps of this study for RAC mixing. (a) Each factor and S/a value of NAs and RAs were used to construct the NN model
using how they satisfied the concrete performance criteria (e.g., slump, air content, admixture, and compressive strength), and how they

matched the selected factor to receive the factor’s optimum value. (b) Each factor’s value obtained in

« _»

a” was applied to the NN input and

output variables. The neuron that received the input value displayed the output value using a connection weight. This time and connection
weight were calculated using a sigmoid transfer function. (c) The GA was applied to optimize each NN parameter (e.g., momentum, learning

rate of the NN, and number of neurons in the hidden layers).

4. Model Construction

In this section, the construction of a compressive strength
prediction model based on NN and GA is described. The NN
architecture was composed of three layers (Figure 3): input
layer, hidden layer, and output layer. The input parameters are
seven: NFA, NCA, RFA, RCA, AE water-reducing, AE admix-
ture content, air content, and slump. The output parameter is

the compressive strength at day 28. A sample of the cases (24
cases of each S/a: 42%, 47%, and 52%) that were used in the
NN training is listed in Table 2.

The learning of NN is accomplished by a backpropagation
algorithm (BPN), and the BPN has one of the following trans-
fer functions sigmoid, linear, and exponential functions, that
are used to calculate the output for each neuron, except for
the input neuron. Among those transfer functions, sigmoid
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TABLE 1: Physical properties of RAs (Ist class) and NAs.
Source of Fineness Specific Wate%r

. absorption

aggregate modulus gravity (%)
NCA 6.52 2.64 1.24
NFA 2.52 2.55 1.53
RCA 6.65 2.53 2.86
RFA 3.89 2.43 4.95
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FIGURE 2: Histogram of compressive strengths of S/a: 42%, 47%, and
52%.

function is used most extensively and has many advantages:
(1) has two advantages of linear and exponential functions,
(2) is nonlinear function, (3) is differentiable function, and
(4) is a S-Pattern. Therefore, the sigmoid function was used
as transfer function in this study.

4.1. NN and GA. The NN is inspired by the neuronal struc-
ture and operation of the biological brain. Figure 3 shows the
simple architecture of backpropagation network with a three-
layer network that was used in this study, which consists
of an input layer, a hidden layer, an output layer, and the
connections between them. The learning mechanism of this
backpropagation network is a generalized delta rule, which
performs a gradient descent on the error space to minimize
the total error between the calculated and desired values
of the output layer during modification of the connection
weights. The detailed process about backpropagation network
is as follows.

(i) At early, NN does connection weights W; and W and
biases 0; and 0y value to give randomly. Input value N; and
activated value N; of hidden layer neuron are calculated as a
result value Oy, for forward by the following equation:

N; =Wl +0,,

(1
H; = f(N;).
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Here, f(x) is activation function (sigmoid function), and
sigmoid function is represented by the following equation:

1
1+ e*(z xw-0;) :

f(x)= )

(ii) Delta (8) is calculated by (3) as difference of target
values (D) and result values (O):

§=(D-0)x0(-0). 3)

(iii) NN calculates for backward from output layer again.
Do a connection weights (W) that is inputted in output layer
which is adjusted by the AW of the following equation:

W,

new

AW = yéH,

= Woiq + AW,
(4)

where 7 is in the range of between 0 and 1 as invariable of
leaning ratio.

(iv) Also, it calculates for backward from hidden layer
again. The hidden layer, by the same formula that is calculated
for backward in output layer, is calculated toward input layer
from the nearest layer to output layer, and the delta of output
layer is as follows:

d=(D oW)x0(-0). (5)

Here, the connection weighting of inputted hidden layer
is adjusted by equal method at (iii) step. This backward
process is calculated through iteration until it reaches a global
minimum point.

(v) Repeat all learning data from (i) to (iv) steps. Uniting
MSE (mean squared error) value of all learning data that get
by repeating, learning of once is completed

1

2pP“
j

(D5 -0,)" (6)

M
M=

MSE =

1i

I
—_

In (6), n is the number of hidden layer neurons, and p is the
number of learning data.

(vi) If the MSE is not satisfied target error value from
(i) step and reached in target error value, this circulation
operation is repeated continuously.
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TABLE 2: Sample of specified concrete mixing proportions used for NN training.

S/a (%) Unit content (kg/m®) Admixtures (g) Air (%)  Slump (cm) Compressive strength (MPa)
NCA RCA NFA RFA  AE-reducing AE agent
1008.68 0 724.81 0 196 4.9 4.3 21.5 33.71 33.79 33.87
1008.68 0 652.33 72.48 196 4.9 3.9 22 30.45 28.43 30.43
706.08 302.60 50737 217.44 196 2.45 5.8 22 33.64 32.65 33.74
42 706.08 302.60 362.405 361.405 196 2.45 2.0 23 35.79 32.80 37.02
504.34 504.34 362.405 361.405 196 2.45 2.8 25 33.71 36.13 34.38
504.34 504.34 0 724.81 196 2.45 2.3 20 31.67 31.68 26.35
0 1008.68  724.81 0 196 2.45 4.5 17 32.22 28.39 28.58
0 1008.68  652.33 72.48 196 2.45 4.5 20 30.42 28.90 32.34
921.73 0 567.77 229.19 196 1.225 6.0 22.5 35.83 36.01 35.44
921.73 0 405.55  381.97 196 1.225 3.3 10 38.16 38.23 36.16
645.21 27014  729.99 76.39 196 1.225 5.6 11 34.91 35.30 33.52
47 645.21  270.14 567.77 229.19 196 1.225 4.7 17 35.94 35.03 34.66
460.86  450.23  567.77 229.19 196 1.225 3.8 22.5 33.70 29.98 35.30
460.86 450.23  405.55  381.97 196 1.225 33 19 32.35 35.48 35.23
0 900.46  243.33  534.76 196 1.225 2.5 21 34.15 34.11 34.92
0 900.46 0 763.94 196 1.225 3.5 17 30.52 31.34 33.15
834.77 0 807.64 84.52 196 0 7.2 22.5 29.08 30.27 29.99
834.77 0 628.17  253.26 196 0 6.8 23 27.64 29.29 30.61
584.34  244.65 89738 0 196 0 2.1 25 30.65 33.06 34.66
52 584.34 244.65 448.69  422.6 196 0 2.8 21 32.87 30.62 29.82
417.39 407.75 807.64 84.52 196 0 3.4 16.5 32.78 33.13 31.87
417.39 407.75 628.17  253.26 196 0 34 16 33.09 34.03 33.48
0 815.51 897.38 0 196 0 3.0 14.5 35.60 31.52 32.64
0 815.51 807.64 84.52 196 0 34 15 35.63 29.06 29.97

The GA employs Darwinian selection and Mendelian
crossover principles. Because GAs are robust and guided
random search methods, they have found a niche in the
nonlinear programming field. GA is based on the collective
learning of a population, the individuals of which represent
the potential solutions for the problem to be solved. GA
transfers a group of genetic individuals from one generation
to the next. A set of individuals from the same generation
is known as a population. Each population goes through a
series of genetic operators, that is, selection, recombination,
or variation, to produce the next generation. An in-depth
analysis is given in [19].

NN is commonly used for difficult tasks involving intu-
itive judgment or requiring the detection of data patterns
that elude conventional analytic techniques. The performance
of NN, however, is affected by the network architecture and
its parameter settings. In NN models, these factors have
been determined by heuristic and trial-and-error methods,
which are time-consuming and tedious [14]. Therefore, in this
research, a primary role of the GA is to determine the number
of neurons in the hidden layers, the momentum, the learning
rate of the NN and to select the appropriate input variables.
Application method of GA to search for a combination of
input variables of NN for optimum performance of NN
model is as follows.

(i) If the number of input variables is “n,” GA composes
individual by random such as in Figure 1(c) with input
variable of “n” This time, number of individual is

created as population size (N) of GA.

(ii) Each individual corresponded with input variable of
NN, and corresponded input variable is applied to NN
and the NN learn. The learned MSE of NN gets fitness
value of each chromosome.

(iii) Individuals which the fitness valued pass hybridiza-
tion (crossover) or mutation process. At this process,
individuals that have excellent fitness value exist, and
individuals that are not so disappear.

(iv) Until reaching optimum result, process of (ii) and
(iii) as established number of households is repeated.
Passing through this process, chromosomes that have
a bad influence upon result value of NN disappears,
and individuals whose fitness is superior exist. As
this, combination of input variable whose estimation
correctness of NN is high is decided. A more in-depth
content is given in [20].

4.2. Implementation of NN and GA. The GA application
process for optimizing the number of input variables in the
input layer, the number of neurons in the hidden layer, and
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the coefficient of learning rates of NN was as follows. First, the
numbers of hidden layers and output neurons in the NN were
set to 1 (2 and 3) and 1, respectively. All chromosomes were
automatically set in NN so that they consisted of the numbers
of input variables, of hidden neurons, and of learning rates.
NN also automatically produced their initial values. The
values for these input variables were set in a range with a
lower limit of X and an upper limit of nX (where X is an input
variable and #» is the number of input variables). The hidden
neuron number was set in a range with a lower limit of 0.75m
and an upper limit of 2m+1 (where m is the number of hidden
neurons). The step size had a lower limit of 0 and an upper
limit of 1, and the momentum had a lower limit of 0 and an
upper limit of 1. The numbers of chromosomes (population
size) and generations were set to 100 and 50, respectively.

After the parameter values (number of input variables,
hidden neurons, step size, and momentum for each chromo-
some) were translated into the predefined NN, the network of
NN was trained on the training data set. A cross-validation
data set was used to test whether the stopping criteria were
satisfied. The training process for the BPN stopped after a
maximum of 1,000 epochs or until there was no improvement
in mean squared error (MSE) for 1,000 epochs on the cross-
validation data set. The fitness of every chromosome was
evaluated by measuring the MSE, which is the estimated
result on a cross-validation data set.

The number of data sets used to train the NN was 176,
and the average training error was 5.26% (lowest training
error 0.06%, highest training error 9.94%). As can be seen in
Figure 4, the model was successfully trained. The model gave
values that were very close to the actual values and was able to
follow the trend of the actual values. On the other hand, the
extreme values of the targeted compressive strengths could
not be obtained from the model because the model was
conservative, and it required more extreme training data to
learn the extremes.

The test results given in Figure 5 are compared with the
40 actually measured data sets tested in the trained model.
As can be seen in Figure 5, the performance of the model was
very good, with an average error of 5.10% (lowest 0.21% and
highest 9.23%).
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4.3. Sensitivity Analysis. The sensitivity of the input variables
of the NN (such as RCA, RFA, and air content) to the
compressive strength of the RAC was also analysed using the
constructed NN model.

Because properties of RAs are different from those of
NAs, shape, surface, impurity content, agent usage, and
others, it is required to research how much those properties of
NAs have an effect on the compressive strength of RAC. And
based on the sensitivity analysis, a mixing design of RAC will
be made. Sensitivity analysis evaluates the changes in training
error resulting from a change in an input value. The 216 data
points obtained by experimentation were used to analyse the
sensitivity of the input variables. In this study, NN with 2
hidden layers optimized by GA was used for the sensitivity
analysis and to map the inputs and outputs.

5. Result and Discussion

The sensitivity of RCA/NCA, which represents the change in
compressive strength according to the replacement ratio of
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RCA, shows a relatively higher value in Figures 6 and 7 than
other input parameters because RCA is angular and rough.
On the other hand, because the surface area of the bond
between an aggregate and cement paste increases or decreases
according to changes in the replacement ratio of RCA, the
concrete strength can vary sharply. The mixing ratio of RCA
affects the compressive strength of RAC.

In Figure 6, the replacement ratio of RFA shows a lower
sensitivity value than the replacement ratio for RCA relative
to the compressive strength of RAC. And in Figure 7, the
compressive strength of RAC decreases with increases in
the replacement ratio of RFA. In particular, the compressive

strength appears to decrease rapidly between the inputs RFA
values of 0.26 and 0.44. In this case, some water may be
absorbed by the RA; the more aggregate, the more water
is absorbed. However, an aggregate content above a certain
amount would lead to less shrinkage and less bleeding,
and therefore, to less damage in the bond between the
aggregate and the cement paste [21]. Therefore, whereas the
compressive strength was abruptly lost between 0.26 and
0.44, the compressive strength did not change when the RFA
value was greater than 0.44.

In Figure 7, the output value decreased to 12.08 with
increases in AE, and then increased again. This result shows
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that the AE admixture acts in RAC in the same way as
in normal concrete: when air voids are incorporated into
the cement paste matrix, either as a result of inadequate
compaction or through the use of an AE admixture, they
also increase the porosity and decrease the strength of the
system. The graph of “output X variable input air” shows
that the concrete suffered considerable loss of strength with
increasing amounts of entrained air.

Sensitivity analysis shows that compressive strength was
more affected by the replacement ratio of RCA than by the
replacement ratio of RFA. The deflection of compressive
strength by the cross-matches of RCA and RFA is shown
in Figure 8. The deflection of compressive strength of RAC
becomes more significant as the replacement ratio of RCA
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increases. Note that the deflection became very serious when
the replacement ratio of RCA exceeded 50%; with increasing
the replacement ratio of RAs, it means that it is difficult
to acquire concrete of designed compressive strength. The
effects of AE admixture on compressive strength are shown
in Figure 9. Under the conditions of this experiment (W/C:
50%; unit water content: 175 kg/m3; unit cement content:
350 kg/m?; acquired compressive strength: 33 to 34 MPa; and
S/a: 42%, 47%, and 52%), the compressive strength of RAC
did not change when the amount of AE admixture added
to the RAC was between 5g and 10 g. However, when the
amount of AE admixture was under 5g and over 10 g, the
compressive strength of the RCA deviated considerably from
the average value. Therefore, the AE admixture must be used
carefully with the RAC. Slump and air content influence
the workability and strength of concrete, although air is
used to make concrete resistant to freezing and thawing.
The compressive strength of concrete is important, but other
properties that are relevant when it is being transported,
possibly pumped, and placed, are equally important. The
suitable range of slump values and air contents for each is 20
+ 1.5 and 4.5 £ 0.5, respectively (Figure 10).

It acquired criteria (Table 3) for optimum mixing of RAC
that have compressive strength 33~34MPa by this research
until now. And it makes the RAC confirm whether these
criteria are suitable or were not so and measure a slump, an
air content, and a compressive strength at 28 days.

The replacement ratio of RAs applied the maximum value
(RCA 30% and RFA 50% at S/a 42%; RCA 50% and RFA
50% at S/a 47%; RCA 50% and RFA 30% at S/a 52%) that
is registered in Table 3 considering the worst situation, and
a W/C did the 50%. There is the result in Table 4. Air and a
slump values among the test values were included in a range
of the target value, and average compressive strength of three
specimens was lower than the target values except an S/a 42%.
But the test values were within the target value in general.

6. Conclusion

This study presents an appropriate quality range for RAs
and the other components of RAC using sensitivity analysis
with neural networks, for use in the production of RAs and
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TABLE 3: Summary of results (approximate range of each parameter).
o .
Required strength (MPa) S/a (%)  Air (%)  Slump (cm) Replacement ratio (%) Admixtures (g)
RCA (Ist Class) RFA (Ist Class) ~ AE-water reducing agent ~ AE agent
42 0~30% 0~50% 196 5~10
33~34 47 4505  20%15 0~50% 0~50% 196 5~10
52 0~50% 0~30% 196 —
TABLE 4: Criteria evaluation.
S/a (%) Unit content (kg/ m?) Admixtures (g) Target value Test value
a7
AE-water AE Air  Slump Strength  Air  Slump Strength
Cement  Water NCA RCA NFA RFA reducing agent  agent (%) (cm) (MPa) (%) (cm) (MPa)
42 719.7 291 368.9 350.2 202 4.9 4.2 18.4 34.4
47 350 175 469.7 443.1 4129 3919 205 1225 4.5+£05 20+ 1.5 33 4.1 21.7 31.7
52 425.4 4013 632.9 2575 203 1.014 4.2 20.1 31.5

RAC, and ultimately to promote the use of RAs in concrete.
In this study, the mixing criteria of the basic concrete for
RAC were determined. RCA content and the AE admixture
content are the most important to the compressive strength
of RAC. Finally, the results of this study will be applied to
use in various mixing proportions of recycled concrete. This
research will contribute to improve the usage of the recycled
aggregate in construction industry and to reduce the waste in
construction process.
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