645 research outputs found
Particle trapping in merging flow junctions by fluid-solute-colloid-boundary interactions
Merging of different streams in channel junctions represents a common mixing process that occurs in systems ranging from soda fountains and bathtub faucets to chemical plants and microfluidic devices. Here, we report a spontaneous trapping of colloidal particles in a merging flow junction when the merging streams have a salinity contrast. We show that the particle trapping is a consequence of nonequilibrium interactions between the particles, solutes, channel, and the freestream flow. A delicate balance of transport processes results in a stable near-wall vortex that traps the particles. We use three-dimensional particle visualization and numerical simulations to provide a rigorous understanding of the observed phenomenon. Such a trapping mechanism is unique from the well-known inertial trapping enabled by vortex breakdown [Proc. Natl. Acad. Sci. USA 111, 4770 (2014)], or the solute-mediated trapping enabled by diffusiophoresis [Phys..Rev. X 7, 041038 (2017)], as the current trapping is facilitated by both the solute and the inertial effects, suggesting a new mechanism for particle trapping in flow networks
Viscosity measurements of glycerol in a parallel-plate rheometer exposed to atmosphere
Glycerol is a hygroscopic fluid that spontaneously absorbs water vapor from
the atmosphere. For applications involving glycerol, care must be taken to
avoid exposure to humidity, since its viscosity decreases quickly as water is
absorbed. We report experimental measurements of the viscosity of glycerol in a
parallel-plate rheometer where the outer interface is exposed to atmosphere.
The measurements decrease with time as water is absorbed from the atmosphere
and transported throughout the glycerol via diffusion and advection. Measured
viscosities drop faster at higher relative humidities, confirming the role of
hygroscopicity on the transient viscosities. The rate of viscosity decrease
shows a non-monotonic relationship with the rheometer gap height. This behavior
is explained by considering the transition from diffusion-dominated transport
in the narrow gap regime to the large gap regime where transport is dominated
by inertia-driven secondary flows. Numerical simulations of the water
absorption and transport confirm this non-monotonic behavior. The experimental
viscosity measurements show unexpectedly fast decreases at very small gap
heights, violating the parallel-plate, axisymmetric model. We propose that this
drop-off may be due to misalignment in the rheometer that becomes
non-negligible for small gaps. Theoretical considerations show that secondary
flows in a misaligned rheometer dominate the typical secondary inertial flows
in parallel-plate rheometers at small gaps. Finally, simulations in a
misaligned parallel-plate system demonstrate the same sharp drop-off in
viscosity measurements at small gap heights. This modeling can be used to
estimate the gap height where misalignment effects dominate the transient
glycerol viscosity measurements.Comment: 26 pages, 17 figure
Toeplitz-Based Iterative Image Reconstruction for MRI With Correction for Magnetic Field Inhomogeneity
In some types of magnetic resonance (MR) imaging, particularly functional brain scans, the conventional Fourier model for the measurements is inaccurate. Magnetic field inhomogeneities, which are caused by imperfect main fields and by magnetic susceptibility variations, induce distortions in images that are reconstructed by conventional Fourier methods. These artifacts hamper the use of functional MR imaging (fMRI) in brain regions near air/tissue interfaces. Recently, iterative methods that combine the conjugate gradient (CG) algorithm with nonuniform FFT (NUFFT) operations have been shown to provide considerably improved image quality relative to the conjugate-phase method. However, for non-Cartesian k-space trajectories, each CG-NUFFT iteration requires numerous k-space interpolations; these are operations that are computationally expensive and poorly suited to fast hardware implementations. This paper proposes a faster iterative approach to field-corrected MR image reconstruction based on the CG algorithm and certain Toeplitz matrices. This CG-Toeplitz approach requires k-space interpolations only for the initial iteration; thereafter, only fast Fourier transforms (FFTs) are required. Simulation results show that the proposed CG-Toeplitz approach produces equivalent image quality as the CG-NUFFT method with significantly reduced computation time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85903/1/Fessler50.pd
Vortex-Breakdown-Induced Particle Capture in Branching Junctions
We show experimentally that a flow-induced, Reynolds number-dependent particle-capture mechanism in branching junctions can be enhanced or eliminated by varying the junction angle. In addition, numerical simulations are used to show that the features responsible for this capture have the signatures of classical vortex breakdown, including an approach flow aligned with the vortex axis and a pocket of subcriticality. We show how these recirculation regions originate and evolve and suggest a physical mechanism for their formation. Furthermore, comparing experiments and numerical simulations, the presence of vortex breakdown is found to be an excellent predictor of particle capture. These results inform the design of systems in which suspended particle accumulation can be eliminated or maximized
The first genome sequence of Anopheles squamous from Macha, Zambia [version 1; peer review: 2 approved]
Despite efforts to minimize the impacts of malaria and reduce the number of primary vectors, malaria has yet to be eliminated in Zambia. Understudied vector species may perpetuate malaria transmission in pre-elimination settings. Anopheles squamosus is one of the most abundantly caught mosquito species in southern Zambia and has previously been found with Plasmodium falciparum sporozoites, a causal agent of human malaria. This species may be a critical vector of malaria transmission, however, there is a lack of genetic information available for An. squamosus. We report the first genome data and the first complete mitogenome (Mt) sequence of An. squamosus. The sequence was extracted from one individual mosquito from the Chidakwa area in Macha, Zambia. The raw reads were obtained using Illumina Novaseq 6000 and assembled through NOVOplasty alignment with related species. The length of the An. squamosus Mt was 15,351 bp, with 77.9 % AT content. The closest match to the whole mitochondrial genome in the phylogenetic tree is the African malaria mosquito, Anopheles gambiae. Its genome data is available through National Center for Biotechnology Information (NCBI) Sequencing Reads Archive (SRA) with accession number SRR22114392. The mitochondrial genome was deposited in NCBI GenBank with the accession number OP776919. The ITS2 containing contig sequence was deposited in GenBank with the accession number OQ241725. Mitogenome annotation and a phylogenetic tree with related Anopheles mosquito species are provided
A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems
A workshop was recently held at Nagoya University (31 October – 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today’s operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human “forecaster in the loop”; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies
- …