13 research outputs found

    MiR-221/222 promote chemoresistance to cisplatin in ovarian cancer cells by targeting PTEN/PI3K/AKT signaling pathway.

    Get PDF
    Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, and its mechanism has not been fully understood. The objectives of this study were to determine the role of miR-221/222 and its underlying mechanism in chemoresistance of ovarian cancer. We demonstrated that miR-221/222 expression levels were higher in A2780/CP cells compared with A2780 S cells. An in vitro cell viability assay showed that downregulation of miR-221/222 sensitized A2780/CP cells to cisplatin-induced cytotoxicity. Moreover, we found that knockdown of miR-221/222 by its specific inhibitors promoted the cisplatin-induced apoptosis in A2780/CP cells. Using bioinformatic analysis and luciferase reporter assay, miR-221/222 were found to directly target PTEN. Moreover, knockdown of miR-221/222 in A2780/CP cells significantly upregulated PTEN and downregulated PI3KCA and p-Akt expression. In conclusion, our results demonstrated that miR-221/222 induced cisplatin resistance by targeting PTEN mediated PI3K/Akt pathway in A2780/CP cells, suggesting that miR-221/222/PTEN/PI3K/Akt may be a promising prognostic and therapeutic target to overcome cisplatin resistance and treat ovarian cancer in the future

    Valproic Acid Promotes Apoptosis and Cisplatin Sensitivity Through Downregulation of H19 Noncoding RNA in Ovarian A2780 Cells

    Get PDF
    Abstract Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, which is partly mediated by long noncoding RNAs (lncRNAs). H19 is a lncRNA involving in cisplatin resistance in cancers. Valproic acid (VPA) is a commonly used drug for clinical treatment of seizure disorders. In addition, this drug may display its effects through regulation of noncoding RNAs controlling gene expression. The aim of the present study was the investigation of VPA treatment effect on H19 expression in ovarian cancer cells and also the relation of the H19 levels with apoptosis and cisplatin resistance. Briefly, treatment with VPA not only led to significant increase in apoptosis rate, but also increased the cisplatin sensitivity of A2780/CP cells. We found that following VPA treatment, the expression of H19 and EZH2 decreased, but the expression of p21 and PTEN increased significantly. To investigate the involvement of H19 in VPA-induced apoptosis and cisplatin sensitivity, H19 was inhibited by a specific siRNA. Our results demonstrate that H19 knockdown by siRNA induced apoptosis and sensitized the A2780/CP cells to cisplatin-induced cytotoxicity. These data indicated that VPA negatively regulates the expression of H19 in ovarian cancer cells, which subsequently leads to apoptosis induction, cell proliferation inhibition, and overwhelming to cisplatin resistance. The implication of H19→EZH2→p21/PTEN pathway by VPA treatment suggests

    Effect of valproic acid on cisplatin-resistant ovarian cancer cell lines

    Get PDF
    Background and aims: Platinum resistance has been one of the most important problems in the management of ovarian cancer. The effects of various chemotherapeutic agents are limited in patients with platinum resistance. Therefore, developing new anticancer drugs that can improve the effect of currently used cytostatics is critical. The current study investigated the effects of valproic acid (VPA) alone and in combination with cisplatin on ovarian cancer cells. Methods: In this experimental study, the human ovarian cancer cell lines (A2780-S and A2780-CP) were grown in RPMI-1640 medium in appropriate culture conditions. The cells were treated with various concentrations of cisplatin (0.15-400 µg/mL) or VPA (10-2000 µg/mL) and were incubated for 24, 48, and 72 hours. Moreover, A2780 cells were co-treated with different concentrations of cisplatin and VPA for 48 hours. Afterward, cell viability was investigated using MTT assay. GraphPad Prism statistical software was used for the data analysis and ANOVA and Duncan’s test were conducted. Results: A dose- and time-dependent reduction was observed in cell viability following the treatment with cisplatin or VPA. Moreover, cotreatment of the A2780 cells with cisplatin and VPA resulted in a significantly greater inhibition of cell viability compared to the treatment with either agent alone. Conclusion: Overall, it can be argued that VPA does not only cause inhibition of proliferation and induction of apoptosis in ovarian cancer cells but also helps to enhance the antiproliferative effects of cisplatin and results in the increased susceptibility to cisplatin in resistant cells. VPA may therefore be used to treat cancer in the future. Keywords: Ovarian cancer, Cisplatin, Valproic acid, Platinum resistance, Antiproliferative effec

    Types of glioma brain tumors and genetic alterations in signaling pathways in them

    No full text
    Types of glioma brain tumors and genetic alterations in signaling pathways in them Background & Objective: Glioma is a common type of primary brain tumor originating in the glial cells that surrounds and supports neurons in the brain. These tumors arise from three different types of cells that are normally found in the brain: astrocytes, oligodendrocytes, and ependymal cells, accordingly types of glioma include: Astrocytomas, Ependymomas, and Oligoastrocytomas. The signaling pathway has been described in systems biology terms as a complex biological network of three steps: (1) an input step in which membrane receptors and their ligands trigger the signal coming from outside the cell; (2) a core system processing step in which protein kinases transmit the signal to the nucleus; (3) an output step in which transcription factors regulate genes that affect various cellular functions. Conclusion: Glioma characteristics are derived from the activation of these pathways, including uncontrolled proliferation, invasion, and angiogenesis. Understanding the genetic alterations that has occurred in these three steps, leading to the formation and progression of glioma tumors, may help improve patient prognosis in order to identify novel treatment targets. In this review, we provide an overview of the most recent developments and current understanding of genetic alterations in these signaling pathways in glioma

    Valproic Acid Promotes Apoptosis and Cisplatin Sensitivity Through Downregulation of H19 Noncoding RNA in Ovarian A2780 Cells

    No full text
    Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, which is partly mediated by long noncoding RNAs (lncRNAs). H19 is a lncRNA involving in cisplatin resistance in cancers. Valproic acid (VPA) is a commonly used drug for clinical treatment of seizure disorders. In addition, this drug may display its effects through regulation of noncoding RNAs controlling gene expression. The aim of the present study was the investigation of VPA treatment effect on H19 expression in ovarian cancer cells and also the relation of the H19 levels with apoptosis and cisplatin resistance. Briefly, treatment with VPA not only led to significant increase in apoptosis rate, but also increased the cisplatin sensitivity of A2780/CP cells. We found that following VPA treatment, the expression of H19 and EZH2 decreased, but the expression of p21 and PTEN increased significantly. To investigate the involvement of H19 in VPA-induced apoptosis and cisplatin sensitivity, H19 was inhibited by a specific siRNA. Our results demonstrate that H19 knockdown by siRNA induced apoptosis and sensitized the A2780/CP cells to cisplatin-induced cytotoxicity. These data indicated that VPA negatively regulates the expression of H19 in ovarian cancer cells, which subsequently leads to apoptosis induction, cell proliferation inhibition, and overwhelming to cisplatin resistance. The implication of H19 -> EZH2 -> p21/PTEN pathway by VPA treatment suggests that we could repurpose an old drug, valproic acid, as an effective drug for treatment of ovarian cancer in the future

    The effect of regular treadmill exercise on miR-10b and Brain-derived Neurotrophic Factor (BDNF) expression in the hippocampus of female rats

    No full text
    Background and Aim: The positive effects of exercise on brain function and increased expression of neuronal growth factors, including brain-derived neurotrophic factor or (BDNF), have been proven. To the further investigate the molecular mechanisms of these changes, As well as knowing that miR-10b is one of the BDNF expression regulators, the effect of exercise on the relative expression of miR-10b (microRNA-10) in female rats was evaluated. Since they have shown in previous studies, Exercise through the interaction with estrogen hormone increases the expression of BDNF, The effect of exercise on the expression of miR-10b in rats without ovarian was also measured. Materials and Methods: In this study, 42 female Wistar rats were selected and divided into two groups: intact and without ovarian.  The rats without ovarian have spent ovariectomy surgery and were used in the experiments after a month. The exercise protocol was four weeks running on the treadmill. Real time PCR was used to determine the relative expression of miR-10b in the hippocampus of rats. Results: The expression of miR-10b in the Sham-exercise group didn’t show any significant difference as compared to the control group in both intact and OVX rats. Compulsive exercise with treadmill did not make any significant changes in the expression of this gene in both types intact and OVX rats (P ˃0.05). But the BDNF expression of OVX rats was significantly increased (P ˂0.05). In fact, there was no correlation between miR-10b expression and exercise-induced BDNF expression changes. ConclusionIn fact, this study failed to prove the association of expression of miR-10b with the increase of BDNF expression which is the result of the interaction of exercise and estrogen hormone and this miRNA can’t be as a regulator of BDNF expression

    Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities

    Get PDF
    The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. Here, we compared the prevalence of the CYP2D6*10, *4, and 14* alleles in an Iranian population of different ethnicities with those of other populations. Allele and genotype frequency distributions of CYP2D6*10 variants and predicted phenotypes including extensive metabolizers, intermediate metabolizers, and poor metabolizers were analysed in blood samples of 300 unrelated healthy individuals in an Iranian population using polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR-single-strand conformation polymorphism, and direct genomic DNA sequencing. The CYP2D6*4 (G1846A) and *14 (G1758A) allelic frequencies were not detected in different ethnicities, demonstrating the absence of a significant contribution of these alleles in Iranian populations. However, the T/T, C/T, and C/C genotype frequencies of the CYP2D6*10 allele were significantly different (P0.01) in all Iranian ethnic groups. Additionally, the frequency of the homozygous T/T variant of the CYP2D6*10 allele was significantly high in the Lure (P0.017) and low in the Kurd (P0.002) ethnicities. The frequency of the T/T variant of the CYP2D6*10 allele in central Iran was the highest (P0.001), while the south of Iran had the lowest frequency (P0.001). The frequency of the C/T variant of the CYP2D6*10 allele was significantly a bit high (P0.001) in females compare to males, while the frequencies of the T/T variant in females is similar to males, which are 24.4% and 24.3%, respectively. In contrast to absence of the CYP2D6*4 (G1846A) and *14 (G1758A) alleles in Iranian populations of different ethnicities, the prediction of the CYP2D6*10 allele is required in drug research and routine treatment, where the information would be helpful for clinicians to optimize therapy or identify persons at risk of adverse drug reactions before clinical trials. Approximately 39.3% of subjects (24.3% homozygous T/T CYP2D6*10 as poor metabolizers and 15% heterozygous C/T CYP2D6*10 as intermediate metabolizers) had this allele; therefore, the harmful effects of drugs are relatively common among Iranians

    Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities

    Get PDF
    The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. Here, we compared the prevalence of the CYP2D6*10, *4, and 14* alleles in an Iranian population of different ethnicities with those of other populations. Allele and genotype frequency distributions of CYP2D6*10 variants and predicted phenotypes including extensive metabolizers, intermediate metabolizers, and poor metabolizers were analysed in blood samples of 300 unrelated healthy individuals in an Iranian population using polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR-single-strand conformation polymorphism, and direct genomic DNA sequencing. The CYP2D6*4 (G1846A) and *14 (G1758A) allelic frequencies were not detected in different ethnicities, demonstrating the absence of a significant contribution of these alleles in Iranian populations. However, the T/T, C/T, and C/C genotype frequencies of the CYP2D6*10 allele were significantly different (P<0.01) in all Iranian ethnic groups. Additionally, the frequency of the homozygous T/T variant of the CYP2D6*10 allele was significantly high in the Lure (P<0.017) and low in the Kurd (P<0.002) ethnicities. The frequency of the T/T variant of the CYP2D6*10 allele in central Iran was the highest (P<0.001), while the south of Iran had the lowest frequency (P<0.001). The frequency of the C/T variant of the CYP2D6*10 allele was significantly a bit high (P<0.001) in females compare to males, while the frequencies of the T/T variant in females is similar to males, which are 24.4% and 24.3%, respectively. In contrast to absence of the CYP2D6*4 (G1846A) and *14 (G1758A) alleles in Iranian populations of different ethnicities, the prediction of the CYP2D6*10 allele is required in drug research and routine treatment, where the information would be helpful for clinicians to optimize therapy or identify persons at risk of adverse drug reactions before clinical trials. Approximately 39.3% of subjects (24.3% homozygous T/T CYP2D6*10 as poor metabolizers and 15% heterozygous C/T CYP2D6*10 as intermediate metabolizers) had this allele; therefore, the harmful effects of drugs are relatively common among Iranians

    Optimization of activin-A. A breakthrough in differentiation of human induced pluripotent stem cell into definitive endoderm

    No full text
    The first step in differentiation of pluripotent stem cell toward endoderm-derived cell/organ is differentiation to definitive endoderm (DE) which is the central issue in developmental biology. Based on several evidences, we hypothesized that activin-A optimization as well as replacement of fetal bovine serum (FBS) with knockout serum replacement (KSR) is important for differentiation of induced pluripotent stem cell (iPSC) line into DE. Therefore, a stepwise differentiation protocol was applied on R1-hiPSC1 cell line. At first, activin-A concentration (30, 50, 70 and 100&nbsp;ng/ml) was optimized. Then, substitution of FBS with KSR was evaluated across four treatment groups. The amount of differentiation of iPSC toward DE was determined by quantitative gene expression analyses of pluripotency (NANOG and OCT4), definitive endoderm (SOX17 and FOXA2) and endoderm-derived organs (PDX1, NEUROG3, and PAX6). Based on gene expression analyses, the more decrease in concentrations of activin-A can increase the differentiation of iPSC into DE, therefore, 30&nbsp;ng/ml activin-A was chosen as the best concentration for the differentiation of R1-hiPSC1 line toward endoderm-derived organ. Moreover, complete replacement of FBS with gradually increased KSR improved the differentiation of iPSC toward DE. For this reason, the addition of 0% KSR at day 1, 0.2% at day 2 and 2% for the next 3&nbsp;days was the best optimal protocol of the differentiation of iPSC toward DE. Overall, our results demonstrate that optimization of activin-A is important for differentiation of iPSC line. Furthermore, the replacement of FBS with KSR can improve the efficiency of iPSC differentiation toward DE
    corecore