10 research outputs found

    Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults

    Full text link
    Power electronic converters enable wind turbines, operating at variable speed, to generate electricity more efficiently. Among variable speed operating turbine generators, permanent magnetic synchronous generator (PMSG) has got more attentions due to low cost and maintenance requirements. In addition, the converter in a wind turbine with PMSG decouples the turbine from the power grid, which favors them for grid codes. In this paper, the performance of back-to-back (B2B) converter control of a wind turbine system with PMSG is investigated on a faulty grid. The switching strategy of the grid side converter is designed to improve voltage drop caused by the fault in the grid while the maximum available active power of wind turbine system is injected to the grid and the DC link voltage in the converter is regulated. The methodology of the converter control is elaborated in details and its performance on a sample faulty grid is assessed through simulation

    Weather Forecasting Error in Solar Energy Forecasting

    Full text link
    As renewable distributed energy resources (DERs) penetrate the power grid at an accelerating speed, it is essential for operators to have accurate solar photovoltaic (PV) energy forecasting for efficient operations and planning. Generally, observed weather data are applied in the solar PV generation forecasting model while in practice the energy forecasting is based on forecasted weather data. In this paper, a study on the uncertainty in weather forecasting for the most commonly used weather variables is presented. The forecasted weather data for six days ahead is compared with the observed data and the results of analysis are quantified by statistical metrics. In addition, the most influential weather predictors in energy forecasting model are selected. The performance of historical and observed weather data errors is assessed using a solar PV generation forecasting model. Finally, a sensitivity test is performed to identify the influential weather variables whose accurate values can significantly improve the results of energy forecasting

    Semi-valley switching method for buck LED driver to increase its efficiency and performance

    Get PDF
    Valley switching is one of the most efficient methods to decrease the switching losses in DC/DC converters. It uses a resonance between the converter's inductor and parasitic output capacitance of a metal–oxide–semiconductor field-effect transistor. In this study, the drawbacks of the valley switching in buck light-emitting-diode (LED) drivers are investigated. It shows that in spite of decreasing the switching losses, the valley switching method reduces its efficiency in some conditions. Also, it is clarified that the valley switching method not only causes current fluctuation in boost power factor correction converters but also malfunctions the buck LED drivers' performance. In this study, a semi-valley switching and its implementation are introduced to solve these problems. In general, it is shown that the proposed method improves both the efficiency and the performance of the buck LED driver, simultaneously. The methodologies are implemented in an experimental prototype to verify the proposed method.Peer reviewe
    corecore