192 research outputs found
Management strategies for saving water and increasing its productivity in lowland rice-based ecosystems
A new method of noncontact temperature measurement in microliter-sized volumes is demonstrated, based on the temperature sensitivity of the fluorescence lifetime of rhodamine-G when it is attached to a DNA oligomer. As temperature changes, the spacing between the fluorescent dye and a designed sequence of DNA bases is modulated by conformation changes of the DNA chain, and as a result the ability of dye molecules to fluoresce is also modulated according to differential quenching by bases on the DNA. In the system that we studied, the temperature sensitivity of the fluorescence lifetime was 36???42 ps/??C depending on specific solution conditions. Although this strategy of temperature measurement is demonstrated using a specific sequence of DNA, it can also be generalized to a dye attached to any other intrinsic quencher of fluorescence whose conformation changes with temperature
Sketch-based Video Object Localization
We introduce Sketch-based Video Object Localization (SVOL), a new task aimed
at localizing spatio-temporal object boxes in video queried by the input
sketch. We first outline the challenges in the SVOL task and build the
Sketch-Video Attention Network (SVANet) with the following design principles:
(i) to consider temporal information of video and bridge the domain gap between
sketch and video; (ii) to accurately identify and localize multiple objects
simultaneously; (iii) to handle various styles of sketches; (iv) to be
classification-free. In particular, SVANet is equipped with a Cross-modal
Transformer that models the interaction between learnable object tokens, query
sketch, and video through attention operations, and learns upon a per-frame set
matching strategy that enables frame-wise prediction while utilizing global
video context. We evaluate SVANet on a newly curated SVOL dataset. By design,
SVANet successfully learns the mapping between the query sketches and video
objects, achieving state-of-the-art results on the SVOL benchmark. We further
confirm the effectiveness of SVANet via extensive ablation studies and
visualizations. Lastly, we demonstrate its transfer capability on unseen
datasets and novel categories, suggesting its high scalability in real-world
application
Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.112Ysciescopu
Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate
To evaluate the feasibility of ZnO nanorod-based surface enhanced Raman scattering (SERS) diagnostics for disease models, particularly for interstitial cystitis/bladder pain syndrome (IC/BPS), ZnO-based SERS sensing chips were developed and applied to an animal disease model. ZnO nanorods were grown to form nano-sized porous structures and coated with gold to facilitate size-selective biomarker detection. Raman spectra were acquired on a surface enhanced Raman substrate from the urine in a rat model of IC/BPS and analyzed using a statistical analysis method called principal component analysis (PCA). The nanorods grown after the ZnO seed deposition were 30 to 50 nm in diameter and 500 to 600 nm in length. A volume of gold corresponding to a thin film thickness of 100 nm was deposited on the grown nanorod structure. Raman spectroscopic signals were measured in the scattered region for nanometer biomarker detection to indicate IC/BPS. The Raman peaks for the control group and IC/BPS group are observed at 641, 683, 723, 873, 1002, 1030, and 1355 cm(-1),which corresponded to various bonding types and compounds. The PCA results are plotted in 2D and 3D. The Raman signals and statistical analyses obtained from the nano-sized biomarkers of intractable inflammatory diseases demonstrate the possibility of an early diagnosis
SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPĪ“, and PTPĻ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength
Optimization of ZnO Nanorod-Based Surface Enhanced Raman Scattering Substrates for Bio-Applications
Nanorods based on ZnO for surface enhanced Raman spectroscopy are promising for the non-invasive and rapid detection of biomarkers and diagnosis of disease. However, optimization of nanorod and coating parameters is essential to their practical application. With the goal of establishing a baseline for early detection in biological applications, gold-coated ZnO nanorods were grown and coated to form porous structures. Prior to gold deposition, the grown nanorods were 30-50 nm in diameter and 500-600 nm in length. Gold coatings were grown on the nanorod structure to a series of thicknesses between 100 and 300 nm. A gold coating of 200 nm was found to optimize the Rhodamine B model analyte signal, while performance for rat urine depended on the biomarkers to be detected. These results establish design guidelines for future use of Au-ZnO nanorods in the study and early diagnosis of inflammatory diseases
- ā¦