38 research outputs found

    Hybrid AF/DF Cooperative Relaying Technique with Phase Steering for Industrial IoT Networks

    No full text
    For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations

    A Cooperative Phase-Steering Technique with On-Off Power Control for Spectrum Sharing-Based Wireless Sensor Networks

    No full text
    With the growth of the number of Internet of Things (IoT) devices, a wide range of wireless sensor networks (WSNs) will be deployed for various applications. In general, WSNs are constrained by limitations in spectrum and energy resources. In order to circumvent these technical challenges, we propose a novel cooperative phase-steering (CPS) technique with a simple on-off power control for generic spectrum sharing-based WSNs, which consists of a single secondary source (SS) node, multiple secondary relay (SR) nodes, a single secondary destination (SD) node, and multiple primary destination (PD) nodes. In the proposed technique, each SR node that succeeds in packet decoding from the SS and for which its interference power to the PD nodes is lower than a certain threshold is allowed to transmit the signal to the SD node. All SR nodes that are allowed to transmit signals to the SD node adjust the phase of their transmit signal such that the phase of received signals at the SD node from the SR nodes is aligned to a certain angle. Moreover, we mathematically analyze the outage probability of the proposed scheme. Our analytical and simulation results show that the proposed technique outperforms the conventional cooperative relaying schemes in terms of outage probability. Through extensive computer simulations, it is shown that the analytical results match well with the simulated outage probability as a lower bound

    Factors Influencing the Accuracy of Shallow Snow Depth Measured Using UAV-Based Photogrammetry

    No full text
    Factors influencing the accuracy of UAV-photogrammetry-based snow depth distribution maps were investigated. First, UAV-based surveys were performed on the 0.04 km2 snow-covered study site in South Korea for 37 times over the period of 13 days under 16 prescribed conditions composed of various photographing times, flight altitudes, and photograph overlap ratios. Then, multi-temporal Digital Surface Models (DSMs) of the study area covered with shallow snow were obtained using digital photogrammetric techniques. Next, the multi-temporal snow depth distribution maps were created by subtracting the snow-free DSM from the multi-temporal DSMs of the study area. Then, snow depth in these UAV-Photogrammetry-based snow maps were compared to the in situ measurements at 21 locations. The accuracy of each of the multi-temporal snow maps were quantified in terms of bias (median of residuals, QΔD) and precision (the Normalized Median Absolute Deviation, NMAD). Lastly, various factors influencing these performance metrics were investigated. The results are as follows: (1) the QΔD and NMAD of the eight surveys performed at the optimal condition (50 m flight altitude and 80% overlap ratio) ranged from −2.30 cm to 5.90 cm and from 1.78 cm to 4.89 cm, respectively. The best survey case had −2.30 cm of QΔD and 1.78 cm of NMAD; (2) Lower UAV flight altitude and greater photograph overlap lower the NMAD and QΔD; (3) Greater number of Ground Control Points (GCPs) lowers the NMAD and QΔD; (4) Spatial configuration and accuracy of GCP coordinates influenced the accuracy of the snow depth distribution map; (5) Greater number of tie-points leads to higher accuracy; (6) Smooth fresh snow cover did not provide many tie-points, either resulting in a significant error or making the entire photogrammetry process impossible

    Relay selection for AF SISO wireless relay networks under jamming environment with relay power constraint

    No full text
    Click on the DOI link to access the article (may not be free).A noncooperative amplify-and-forward (AF) wireless relay network consisting of a one-source-one-destination pair and N relays is investigated. The objective of this paper is to analytically derive the explicit optimal noncooperative relay amplifying matrices (or vector) under both jamming and no-jamming environments, with the relay power constraint based on the minimum mean square error (MMSE) criterion. The MMSE cost function behaviors will be analytically and numerically investigated using the relay amplifying vectors derived. Finally, the relay selection scheme for the noncooperative AF wireless relay network is presented using the maximum signal-to-noise ratio (SNR) criterion under both jamming and no-jamming environments

    Large changes of graphene conductance as a function of lattice orientation between stacked layers

    No full text
    Using the conductive tip of an atomic force microscope as an electrode, we found that the electrical conductance of graphite terraces separated by steps can vary by large factors of up to 100, depending on the relative lattice orientation of the surface and subsurface layers. This effect can be attributed to interlayer interactions that, when stacked commensurately in a Bernal sequence (ABAB…), cause the band gap to open. Misaligned layers, on the other hand, behave like graphene. Angular misorientations of a few degrees were found to cause large increases in the conductance of the top layer, with the maximum occurring around 30°. These results suggest new applications for graphene multilayers by stacking layers at various angles to control the resistance of the connected graphene ribbons in devices.111sciescopu

    Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties

    No full text
    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices. © 2015 American Chemical Society113131sciescopu

    Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy

    No full text
    The electrical nature of the nanoscale contact between metal nanodots and semiconductor rods has drawn significant interest because of potential applications for metal-semiconductor hybrid nanostructures in energy conversion or heterogeneous catalysis. Here, we studied the nanoscale electrical character of the Pt/CdSe junction in Pt/CdSe/Pt nanodumbbells on connected Au islands by conductive-probe atomic force microscopy under ultra-high vacuum. Current-voltage plots measured in contact mode revealed Schottky barrier heights of individual nanojunctions of 0.41 ± 0.02 eV. The measured value of the Schottky barrier is significantly lower than that of planar thin-film diodes because of a reduction in the barrier width and enhanced tunneling probability at the interface. This journal is © The Royal Society of Chemistry111121sciescopu

    Internal and External Atomic Steps in Graphite Exhibit Dramatically Different Physical and Chemical Properties

    No full text
    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices
    corecore