30 research outputs found

    Batch and column studies on methylene blue using activated carbon/Al2O3 nano-composite and its impregnated calcium alginate beads

    Get PDF
    Activated carbon/Al2O3 nano-composite (ANC) was synthesized by simple pyrolysis after incorporating the aluminium acetate precursor in activated carbon (AC) matrix. The as-synthesized composite was characterized by FT-IR, XRD, BET isotherm, SEM, EDX, and TEM. The size of Al2O3 nanoparticles in carbon matrix was found to be in the range of 10-35 nm. Adsorption characteristics of nano-composite was evaluated using methylene blue dye (MB) by batch and column studies. In batch process, the effect of concentration, temperature and pH were investigated. Batch adsorption study was interpreted with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Results showed that adsorption follows Freudlich isotherm model with an adsorption capacity of 116 mg/g at pH 7 at 30 °C and it increases with increase in pH. Kinetic data indicated that the adsorption of dye follows pseudo-second order kinetics model. The negative value of ΔG indicates the spontaneous nature of the adsorption process. For column study the nano-composite was fabricated into Calcium alginate beads (CAB). The performance of CAB was studied with different influent concentrations of MB, pH and bed depth and the results have been interpreted using Thomas and BDST models. The column shows an adsorption capacity of 285.57 mg/g of CAB at pH 7 with bed height of 10 cm and best fitted to BDST model. These outcomes indicate the capability of carbon/Al2O3 nano-composite for dye removal

    Effect of Low-level Laser Therapy and Platelet-rich Fibrin on the Treatment of Intra-bony Defects

    Get PDF
    Introduction: Attempts to regenerate the periodontal osseous defect, which is lost as a result of periodontal disease, require the tapping of the innate healing potential of periodontium through appropriately designed therapeutic strategies. A multitude of grafted and non-grafted approaches have been used in the management of Intra-bony defects. However, they do not provide predictable periodontal regeneration. The aim of this study was to evaluate the combined effect of low-level laser therapy (LLLT) and platelet-rich fibrin (PRF), in site modulated intra-bony defects (decortication), which were accessed using a simplified papilla preservation flap (SPPF), on the clinical and radiographic outcomes of periodontal disease.Methods: A total of 30 patients with intra-bony defects were recruited for the study and randomly distributed in two groups (n=15). Test group sites were accessed with SPPF and the defects received intra-marrow Penetration (IMP) following debridement and were irradiated with a low-level laser followed by PRF grafting and suturing done. The control group defects were accessed with SPPF and grafted with PRF before being secured by sutures. The plaque and bleeding score, PPD, CAL, and the position of the gingival margin with radiographic defect depth were recorded and analyzed at baseline and six months post-intervention using the student’s t-test and Wilcoxon signed-rank test.Results: The test group showed a clinically relevant increase in mean PPD reduction, CAL gain, and radiographic bone fill (3.6 ± 1.35 mm, 3.26 ± 1.16 mm, and 2.44 ± 1.24 mm) compared to the control group (2.93 ±1.1 mm, 2.267 ± 1.33 mm and 1.26 ± 0.99 mm) six months post-intervention. However, intergroup comparison between the test and control groups did not show any statistically significant difference.Conclusion: These results highlight that test protocol had greater amelioration of the effects of periodontal disease and all the investigated clinical and radiographic parameters showed considerable improvement from baseline to 6 months within the test and control group, but intergroup comparison between the test and control groups did not show any statistically significant difference, indicating statistical equivalence between the test and control protocol

    Cricket/Mica2 Based Discrete Event Simulator for WiHoc Ver.l.O Localization Analysis

    No full text
    The deployment of Wireless Sensor Networks (WSN) has enabled applications to operate at its optimum and maximum potential. This paper presents the enhancement of the Wireless Hockey (WiHoc) System ver.l.O. The sensors are utilized to acquire the movement of field hockey players on a coaching strategy board. These are denoted and executed by the Cricket I Mica-2 sensors which have been utilized as the COfe hardware of the developed system. A software to enable coordinate derivation for the field hockey localization is further developed to relate the localization information to the hockey Grid. In addition, the details of a proposed and developed Discrete Event Simulator (DES) to analyze the performance analysis ofWiHoc is deliberated extensively. The developed simulator is analyzed utilizing the accuracy metric. The correlation of the DES has enabled optimized operations of the WiHoc system, which have been demonstrated by the extensive experiments conducted

    Support Vector Machine Based Classification Model for Screening Proliferation Inhibitors and Non-Inhibitors

    No full text
    There is an urgent need to develop novel anti-malarials in view of the increasing disease burden and growing resistance of the currently used drugs against the malarial parasites. Proliferation inhibitors targeting P. falciparum intraerythrocytic cycle are one of the important classes of compounds being explored for its potential to be novel antimalarials. Support Vector Machine (SVM) based model developed by us can facilitate rapid screening of large and diverse chemical libraries by reducing false hits and prioritising compounds before setting up expensive High Throughput Screening experiment. The SVM model, trained with molecular descriptors of proliferation inhibitors and non-inhibitors, displayed a satisfactory performance on cross validations and independent data set, with an average accuracy of 83% and AUC of 0.88. Intriguingly, the method displayed remarkable accuracy for the recently submitted P. falciparum whole cell screening datasets. The method also predicted several inhibitors in the National Cancer Institute diversity set, mostly similar to the known inhibitors
    corecore