49 research outputs found

    Effect of environmental stresses on chemical components related to taste, growth and yield of chili pepper (Capsicum spp.) (環境ストレスがトウガラシ(Capsicum spp.)の呈味成分含量、成長および収量に及ぼす影響)

    Get PDF
    信州大学(Shinshu university)博士(農学)この博士論文は、次の学術雑誌論文を一部に使用しています。 / HORTICULTURE JOURNAL 90(1):58-67 (2021); doi:10.2503/hortj.UTD-217. © 2021 The Japanese Society for Horticultural Science (JSHS).ThesisR. M. SANGEETH M. B. RATHNAYAKA. Effect of environmental stresses on chemical components related to taste, growth and yield of chili pepper (Capsicum spp.) (環境ストレスがトウガラシ(Capsicum spp.)の呈味成分含量、成長および収量に及ぼす影響). 信州大学, 2021, 博士論文. 博士(農学), 甲第92号, 令和03年03月20日授与.doctoral thesi

    Characterizing the Metal–SAM Interface in Tunneling Junctions

    Get PDF
    his paper investigates the influence of the interface between a gold or silver metal electrode and an n-alkyl SAM (supported on that electrode) on the rate of charge transport across junctions with structure Met(Au or Ag)TS/A(CH2)nH//Ga2O3/EGaIn by comparing measurements of current density, J(V), for Met/AR = Au/thiolate (Au/SR), Ag/thiolate (Ag/SR), Ag/carboxylate (Ag/O2CR), and Au/acetylene (Au/C≡CR), where R is an n-alkyl group. Values of J0 and β (from the Simmons equation) were indistinguishable for these four interfaces. Since the anchoring groups, A, have large differences in their physical and electronic properties, the observation that they are indistinguishable in their influence on the injection current, J0 (V = 0.5) indicates that these four Met/A interfaces do not contribute to the shape of the tunneling barrier in a way that influences J(V).Chemistry and Chemical Biolog

    Charge transport properties of water dispersible multiwall carbon nanotube-polyaniline composites

    Get PDF
    The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs) and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport.Peer reviewe

    Microfluidic Organ-On-A-Chip: A Guide to Biomaterial Choice and Fabrication

    No full text
    Organ-on-a-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed

    Self-supervised learning based knowledge distillation framework for automatic speech recognition for hearing impaired

    No full text
    The use of speech processing applications, particularly speech recognition, has got a lot of attention in recent decades. In recent years, research has focused on using deep learning for speech-related applications. This new branch of machine learning has outperformed others in a range of applications, including voice, and has thus become a particularly appealing research subject. Noise, speaker variability, language variability, vocabulary size, and domain remain one of the most significant research difficulties in speech recognition. We investigated on self-supervised algorithm for the unlabelled data. In recent years, these algorithms have progressed significantly, with their efficacy approaching and supervised pre-training alternatives across a variety of data modalities such as image and video. The purpose of this research is to develop powerful models for audio speech recognition that do not require human annotation. We accomplish this by distilling information from an automatic speech recognition (ASR) model that was trained on a large audio-only corpus. We integrate Connectionist Temporal Classification (CTC) loss, KL divergence loss in distillation technique. We demonstrate that distillation significantly speeds up training. We evaluate our model with evaluation metric Word Error Rate (WER)

    Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication

    No full text
    Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed

    Charge transport properties of water dispersible multiwall carbon nanotube-polyaniline composites

    No full text
    The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American
    corecore