806 research outputs found

    Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines

    Get PDF
    Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus

    Multiple domains of TonEBP cooperate to stimulate transcription in response to hypertonicity.

    Get PDF
    Tonicity-responsive enhancer binding protein (TonEBP), also known as NFAT5, belongs to the Rel family of transcriptional activators. In the kidney medulla and thymus, TonEBP plays a major role in protecting renal cells and T cells from the deleterious effects of ambient hypertonicity. TonEBP is stimulated by hypertonicity via several pathways: increased expression of protein, nuclear translocation, and increased transactivation. In this study, we identified five domains of TonEBP involved in transactivation. The two conserved glutamine repeats were not involved in transactivation. There were three activation domains that could stimulate transcription independently. In addition, there were two modulation domains that potentiated the activity of the activation domains. One of the activation domains is unique to a splice isoform that is more active than others, indicating that alternative splicing can affect the activity of TonEBP. Another activation domain and one of the modulation domains were stimulated by hypertonicity. All the five domains acted in synergy in every combination. Although overall phosphorylation of TonEBP increased in response to hypertonicity, phosphorylation of the activation and modulation domains did not increase in isolation. In sum, TonEBP possesses far more elaborate domains involved in transactivation compared with other Rel proteins

    Ginseng Protects Against Respiratory Syncytial Virus by Modulating Multiple Immune Cells and Inhibiting Viral Replication

    Get PDF
    Ginseng has been used in humans for thousands of years but its effects on viral infection have not been well understood. We investigated the effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced cell death and viral replication. In addition, RGE significantly inhibited the production of RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight after RSV infection. RGE treatment improved lung viral clearance and enhanced the production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection of mice. Taken together, these results provide evidence that ginseng has protective effects against RSV infection through multiple mechanisms, which include improving cell survival, partial inhibition of viral replication and modulation of cytokine production and types of immune cells migrating into the lung

    Respiratory Syncytial Virus-Like Nanoparticle Vaccination Induces Long-Term Protection Without Pulmonary Disease by Modulating Cytokines and T-cells Partially Through Alveolar Macrophages

    Get PDF
    The mechanisms of protection against respiratory syncytial virus (RSV) are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs]) have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs) in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV) or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL)-4+ T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration
    • …
    corecore