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Abstract: Ginseng has been used in humans for thousands of years but its effects on viral 
infection have not been well understood. We investigated the effects of red ginseng extract 
(RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo 
mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced 
cell death and viral replication. In addition, RGE significantly inhibited the production of 
RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like 
cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight 
after RSV infection. RGE treatment improved lung viral clearance and enhanced the 
production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. 
Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment 
increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection 
of mice. Taken together, these results provide evidence that ginseng has protective effects 
against RSV infection through multiple mechanisms, which include improving cell survival, 
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partial inhibition of viral replication and modulation of cytokine production and types of 
immune cells migrating into the lung. 

Keywords: ginseng; respiratory syncytial virus; antiviral activity; cytokines;  
Immuno-modulatory effects 

 

1. Introduction 

Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a negative  
single-stranded RNA virus. RSV is the leading cause of serious respiratory disease in infants and 
immune-suppressed populations [1,2]. The mechanisms of causing disease by respiratory viruses are not 
fully understood. During the primary RSV infection in the respiratory tracts, lung epithelium and 
alveolar macrophages are likely to be the major cell types infected, which subsequently trigger the 
production of a wide range of T helper type 1 and type 2 cytokines and chemokines [3]. Recruitment of 
inflammatory cells into the lung plays a central role in determining a disease outcome during RSV 
infection [4–6]. RSV infection is known to cause enhanced expression of cytokines such as interleukin 
(IL)-6, IL-10, and tumor necrosis factor (TNF)-α, and the chemokine such as IL-8, interferon  
(IFN)-inducible protein (IP)-10, growth-regulated protein (GRO), and RANTES in different cell types 
by in vitro culture studies [7,8]. In clinical studies, it was reported that high levels of proinflammatory 
cytokines including IL-4, IL-5 and IL-6 were associated with acute bronchiolitis in RSV-infected 
children [3]. These data were consistent with excessive T helper type 2 and/or deficient type 1 immune 
responses in RSV bronchiolitis [1,9]. Both innate and adaptive immune responses are thought to 
contribute to the development of bronchiolitis in RSV infection [10]. Dendritic cells are uniquely 
positioned to link innate to adaptive immune responses and may therefore play a role in modulating 
bronchiolitis [11]. 

Herbal medicines have been used for thousands of years, and thus hold a great promise for their 
usefulness in treating medical illnesses or in improving physical performance. Among many herbal 
medicines, Panax ginseng C. A. Meyer mainly produced in Korea, China, and America, is one of the 
most commonly used ginseng plants [12,13]. Ginseng has been shown to display immunomodulatory 
effects either in an immuno-stimulatory or in an immuno-suppressive manner depending on disease 
environment [14]. It was reported that ginseng could stimulate different immune cells, indicating its 
immuno-stimulatory function [15,16]. In other studies, a polysaccharide component of ginseng was 
shown to suppress early acute inflammatory responses, contributing to the protection of mice  
from Staphylococcus aureus-induced sepsis, supporting a role of ginseng as an anti-inflammatory 
function [17,18]. In addition, ginseng is known to have beneficial pharmacological effects on 
hypodynamia, anorexia, shortness of breath, palpitations, insomnia, impotence, hemorrhage, and 
diabetes [19]. However, the potential effects of ginseng on RSV infection remain unknown. 

In the present study, we investigated the potential effects of red ginseng extract (RGE) on RSV-induced 
cytopathogenic formation and viral replication in human epithelial cells. We examined whether RGE 
could inhibit RSV-induced pro-inflammatory cytokines in murine dendritic and macrophage-like cell 
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lines. In addition, we evaluated the potential immunomodulatory functions of RGE after RSV viral 
infection in a mouse model. 

2. Materials and Methods 

2.1. Cells, Virus, Reagents 

The RSV A2 strain was originally provided by Dr. Barney Graham (NIH, Bethesda, MD, USA) as 
previously described [20,21]. HEp2 cells were obtained from American Type Culture Collection and 
macrophage-like cell line RAW264.7 was a gift from Dr. Martin J. D’Souza (College of Pharmacology 
and Health Sciences, Mercer University, Atlanta, GA, USA). Dendritic cell line DC2.4 was also kindly 
provided by Dr. Martin J. D’Souza, and cultured and used as previously described [22,23]. Korean red 
ginseng extract (RGE), a concentrated form of the commercial ginseng product was obtained from the 
Korea Ginseng Corporation (Daejeon, Korea). Briefly, fresh roots of the Panax ginseng that had grown 
for six years were washed, steamed at 100 °C for 2 to 3 h and dried. The dried red ginseng roots after 
the steaming process were boiled in 4 to 5 volumes of water for 3 h and the supernatants (600 g, 30 min) 
were concentrated. This preparation obtained after centrifugation was designated “red ginseng extract 
(RGE)” (approximately 36% water content) which contains approximately 1.8% to 2.3% ginsenosides 
(18–23 mg ginsenosides/g red ginseng extract powder). Polyclonal goat anti-RSV antibody and mouse 
anti-RSV fusion protein were purchased from Millipore (Billerica, MA, USA). Secondary HRP-conjugated 
anti-mouse antibody was purchased from Southern Biotech (Birmingham, AL, USA). Fetal bovine 
serum (FBS), penicillin-streptomycin, RPMI1640, and Dulbecco’s modified Eagle’s medium (DMEM) 
were purchased from GIBCO (Grand Island, NY, USA). All other chemicals were analytical grade. 

2.2. Preparation of RSV Stock 

HEp2 cells were grown in tissue culture flasks in DMEM containing 10% FBS. RSV was added, and 
virus adsorption was carried out in medium without serum for 1 h at 37 °C with 5% CO2. DMEM with 
5% FBS was added to the flask and incubated for 3–5 days. RSV-infected cells were collected using a 
cell scraper, sonicated and centrifuged at 2000 rpm for 10 min at 4 °C, and the supernatants were titrated 
by an immunoplaque assay as described [20,21] and stored at −80 °C. 

2.3. RSV Immunoplaque Assay 

HEp2 cells were grown in 12-well plates until confluent. Virus stock or lung homogenates from 
infected mice were serially diluted in DMEM media without FBS. Virus samples were added to the 
plates and incubated for 1 h at 37 °C. Each well received 1 mL of overlay and was incubated 3–6 days 
at 37 °C. Cells were fixed with ice-cold acetone-methanol (60:40) for 10 min. After air-drying, anti-F 
monoclonal antibody and then HRP-conjugated anti-mouse IgG antibodies were used. Individual 
plaques were developed using DAB substrate (Invitrogen, Camarillo, CA, USA). 
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2.4. Cell Viability Assay 

The effect of RGE and RSV A2 virus on the cell viability was determined using the  
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) bromide (MTT) assay, which is based on the 
reduction of a tetrazolium salt by mitochondrial dehydrogenase in viable cells [24]. After various 
treatments, 50 μL of the MTT stock solution (2 mg/mL) was then added to each well to attain a total 
reaction volume of 200 μL. After incubation for 2 h at 37 °C, the formazan crystals in each well were 
dissolved in isopropyl alcohol, and the absorbance was determined at 570 nm. Cell viability was 
expressed as a percentage with the control cells treated with vehicle as 100%. 

2.5. Cytopathogenic Effect (CPE) Reduction Assay 

The cytopathogenic effect (CPE) was determined as previously described [25]. Confluent cell 
monolayers grown in 96-well plates were infected with RSV at the indicated multiplicities of infection 
(MOIs). The virus-induced CPE was recorded at 48 h post infection. 

2.6. Assays for Cytokines 

After various treatments, culture supernatants were collected from dendritic cells and macrophages 
treated with or without RSV and RGE. Concentrations of TNF-α in the culture supernatants  
were determined using ELISA kit (eBioscience, San Diego, CA, USA) according to the  
manufacturer’s instructions. 

2.7. Treatment of Mice with RGE and RSV A2 Virus 

RGE was dissolved in sterile PBS and filtered through 0.45 μm Millipore membrane. For animal 
experiments, 6–8 weeks old female BALB/c mice (Harlan Laboratories, Indianapolis, IN, USA) were 
used. To determine the preventative effects of RGE treatment on RSV infection, BALB/c mice  
(n = 5 per group) were pretreated one time intranasally with RGE (4 mg per mouse) 1 day prior to 
infection with RSV. To determine the protective effects of RGE treatment on RSV infection, BALB/c 
mice (n = 5 per group) were infected intranasally with a mixture of RGE (4 mg per mouse) and RSV. 
As a control, BALB/c mice (n = 5 per group) were intranasally infected with RSV (1 × 105 PFU or  
1 × 106 PFU). Mice were anesthetized by isoflurane inhalation before treatment with RGE or RSV. Mice 
were monitored daily to record weight changes. Full details of this study and all animal experiments 
presented in this manuscript were approved by the Georgia State University (GSU) Institutional Animal 
Care and Use Committee (IACUC) review board on 31 October 2013 (A11026) and conducted under 
the guidelines of the IACUC. GSU IACUC operates under the federal Animal Welfare Law 
(administered by the USDA) and regulations of the Department of Health and Human Services. 

2.8. Lung Virus Titer and Cytokine Assays 

Mice were anesthetized with isoflurane and exsanguinated after severing of the right caudal artery. 
The individual lungs were removed aseptically at day 5 post challenge, and lung extracts were prepared as 
homogenates after challenge using frosted glass slide [21]. The homogenates were centrifuged at  

 



Nutrients 2015, 7 1025 
 
2000 rpm for 10 min to collect supernatants. The virus titer in the supernatants was determined by an 
immunoplaque assay. Cytokine ELISA was performed as described previously [26]. Ready-Set-Go  
IFN-γ kits (eBioscience, San Diego, CA, USA) were used for detecting cytokine levels in bronchoalveolar 
lavage (BAL) fluids following the manufacturer’s recommended procedures [27]. 

2.9. Preparation of Bronchoalveolar Lavage (BAL) and Flow Cytometric Analysis 

Five days after RSV infection, mice were sacrificed to collect BAL fluids (BALF) and lung samples. 
BALF samples were obtained by infusing 1 mL of PBS into the lungs via the trachea using a 25-gauge 
catheter (Exelint International Co., Los Angeles, CA, USA) as described [27]. Cells from BALF were 
stimulated with RSV F peptide (1 μg/mL) or RSV G peptide (1 μg/mL) for 4 h. After staining with 
surface antibodies (anti-CD45, CD3, CD8α, F4/80, CD11b, CD11c antibodies from eBiosciences), 
intracellular IFN-γ cytokine staining was followed by manufacturer’s manuals (BD Cytofix/Cytoperm™ 
Fixation/Permeabilization Solution Kit). The percentage of gated cells was calculated by Flow Jo 
software (Tree Star Inc., San Carlos, CA, USA). 

2.10. Statistical Analysis 

Data were expressed as means ± standard error (SEM), and the results were taken from at least three 
independent experiments performed in triplicate. The data were analyzed by Student’s t-test to evaluate 
significant differences. A level of p < 0.05 was regarded as statistically significant. 

3. Results 

3.1. Influence of RGE on RSV Replication in Human Epithelial Cells 

Since epithelial cells are the primary targets of RSV infection [28], we investigated the possible 
effects of RGE on RSV infection in human epithelial (HEp2) cells. Confluent HEp2 cell layers were 
infected with RSV at different MOIs in the presence or absence RGE treatment. If not otherwise stated, 
RGE was continuously present in cell culture media starting with a day pre-infection period and during 
the infection period of two days. RGE at the concentration of 500 μg/mL did not affect HEp2 cell 
viability (Figure 1A). Infection with higher MOIs of RSV induced more cell death (Figure 1B).  
RGE treatment of human epithelial HEp2 cells during RSV infection partially prevented RSV-induced 
cell death (Figure 1C,D). More significantly, treatment with RGE reduced the production of RSV 
infectious viral titers (Figure 2). In particular, the effects of RGE on lowering RSV replication in HEp2 
cells were more pronounced at lower MOIs of RSV (Figure 2). 
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Figure 1. Effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV)-induced 
cytopathogenic effects. (A) Effects of RGE concentrations on the growth of HEp2 cells;  
(B) Effects of different RSV MOIs on the viability of HEp2 cells. * p < 0.05; ** p < 0.01; 
*** p < 0.001 vs. non-infected cells; (C,D) Effects of different RGE concentrations on the 
viability of HEp2 cells infected with RSV at different MOIs 48 h post infection. HEp2 cells 
were continuously treated with RGE starting 24 h prior to infection and during the infection 
period. Values are the mean ± SEM. * p < 0.05. G250: 250 μg RGE per mL, G500:  
500 μg RGE per mL. 

 

Figure 2. Red ginseng extract (RGE) inhibits respiratory syncytial virus (RSV) replication in 
human epithelial cells. (A) Growth of RSV in human epithelial cell line HEp2 cells. Values 
are the mean ± SEM. * p < 0.05; ** p < 0.01 vs. RSV-infected control at a MOI of 0.25; 
(B,C) Effects of different RGE concentrations on the growth of RSV in HEp2 cells infected 
with RSV at different MOIs 48 h post infection. Values are presented as mean ± SEM of 
three independent experiments and are expressed as the percentage of virus growth relative 
to the value of RSV infection at a MOI of 0.25. * p < 0.05; ** p < 0.01; *** p < 0.001. G250: 
250 μg RGE per mL, G500: 500 μg RGE per mL. 

3.2. Effects of RGE on RSV-Induced Cytokine Production in Dendritic and Macrophage Cells 

RSV infection can cause inflammatory pneumonia in lungs. To investigate whether RGE could inhibit 
RSV-induced pro-inflammatory cytokine production, RAW264.7 cells, a macrophage cell line, were 
infected with different MOIs of RSV in the presence or absence of RGE at various concentrations  
(Figure 3). It has been shown that RSV increased TNF-α expression by macrophages after in vitro 
infection [29]. In line with this, RSV-infected RAW264.7 cells significantly induced the production of 
a pro-inflammatory cytokine TNF-α compared to mock-treated cells (Figure 3). RGE treatment 
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significantly inhibited the production of pro-inflammatory cytokine TNF-α induced by RSV infection in 
the RAW264.7 macrophage cell line (Figure 3). To further test whether RGE treatment would inhibit 
the production of pro-inflammatory cytokines induced by RSV infection, DC2.4 cells, a dendritic cell line, 
were infected with different MOIs of RSV in the presence or absence of various concentrations of RGE. 
The production of cytokine TNF-α in DC2.4 cells was more responsive to the different MOIs of RSV 
infection than the TNF-α production in RAW264.7 cells (Figure 4). A similar pattern of RGE  
dose-dependent inhibition in the TNF-α production was observed in the RSV-infected DC2.4 dendritic 
cell line (Figure 4). Therefore, these results indicate that RGE could inhibit the production of  
pro-inflammatory cytokine TNF-α induced by RSV infection in a dose-dependent manner. 

 

Figure 3. Red ginseng extract (RGE) inhibits respiratory syncytial virus (RSV)-induced 
inflammatory cytokine production in macrophages. RAW264.7 macrophages were  
mock-infected or infected with RSV at different MOIs. RAW264.7 macrophages were 
treated with RGE 24 h prior to infection or during the infection period. Concentrations of 
TNF-α in the culture supernatants were determined using ELISA kit. (A) Pre-treatment of 
RGE on RAW264.7 macrophages infected with RSV at different MOIs; (B) Co-treatment of 
RGE on RAW264.7 macrophages infected with RSV at different MOIs. Values are the mean ± 
SEM. * p < 0.05; ** p < 0.01; *** p < 0.001. 

 

Figure 4. Red ginseng extract (RGE) inhibits respiratory syncytial virus (RSV)-induced 
cytokine production in dendritic cells. DC2.4 dendritic cells were mock-infected or infected 
with RSV at different MOIs. DC2.4 dendritic cells were treated with RGE 24 h prior to 
infection or during the infection period. Concentrations of TNF-α in the culture supernatants 
were determined using an ELISA kit. (A) Pre-treatment of RGE on DC2.4 dendritic cells 
infected with RSV at different MOIs; (B) Co-treatment of RGE on DC2.4 dendritic cells 
infected with RSV at different MOIs. Values are the mean ± SEM. * p < 0.05; ** p < 0.01; 
*** p < 0.001. 

A B

A B
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3.3. RGE Treatment Improves Clinical Outcomes upon RSV Infection of Mice 

An in vivo animal model would provide more relevant information on RGE effects on RSV infection. 
To examine whether RGE could confer protection against RSV infection, BALB/c mice were 
intranasally pretreated once with RGE (4 mg per mouse) 1 day prior to infection with RSV  
(Pre RGE + RSV) or intranasally infected with RSV (1 × 105 or 1 × 106 PFU/mouse) as a mixture with 
RGE (Co RGE + RSV) (Figure 5). Body weight changes were daily monitored as an indicator for 
morbidity (Figure 5A). Without RGE treatment, pronounced loss in body weight of infected naïve mice 
were observed in an RSV infection dose dependent manner. A high dose of RSV (1 × 106 PFU/mouse) 
caused more weight loss than a low dose RSV (1 × 105 PFU/mouse) (Figure 5A,D). Pretreatment of 
mice with RGE prior to infection prevented weight loss in mice subsequently infected with RSV 
compared to untreated RSV infected mice (1 × 105 PFU per mouse) (Figure 5A,D). RGE effects on 
preventing weight loss were more prominent when a high dose of RSV (1 × 106 PFU per mouse) was 
used (Figure 5A,D). Co-treatment of mice with RGE at the time of RSV infection also showed some 
effects on preventing severe weight loss compared to the control group without RGE (Figure 5D)  
but the degree of preventing weight loss was lower than that by RGE pretreatment. To better understand 
protective parameters by RGE treatment, we determined viral loads in lungs and IFN-γ cytokine in 
bronchoalveolar lavage fluids (BALF) at day 5 post infection (Figure 5). RGE-pretreated mice exhibited 
significantly lower lung viral titers compared to those of untreated RSV infected mice (Figure 5B,E). In 
addition, RGE-treated mice showed a trend of increasing the levels of IFN-γ cytokine in BALF although 
there were no statistically significant differences compared to untreated RSV-infected control mice 
(Figure 5C,F). Pretreatment with RGE showed more protective effects on preventing weight loss and 
controlling lung viral loads than treatment with RGE at the time of RSV infection. Overall, RGE 
treatment improved the clinical outcomes of mice upon RSV infection. 

 

Figure 5. Cont. 
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Figure 5. Pretreatment with red ginseng extract (RGE) improves clinical outcomes in mice 
upon infection with respiratory syncytial virus (RSV). Changes in body weight (A,D), lung 
viral titers (B,E), and bronchoalveolar lavage fluids (BALF) cytokine level of interferon  
(IFN)-γ (C,F) were determined at day 5 post RSV infection. Values are the mean ± SEM.  
* p < 0.05; ** p <0.01; *** p < 0.001 vs. RSV-infected control. RSV only: naïve mice 
infected with RSV in PBS, Pre RGE + RSV: naïve mice were pretreated intranasally once 
with RGE (4 mg per mouse) 24 h prior to infection with RSV, Co RGE + RSV: naive mice 
were treated once intranasally with a mixture of RGE (4 mg per mouse) and RSV. 

3.4. RGE Modulates Bronchoalveolar Immune Cells upon RSV Infection of Mice 

As lung is a major organ of RSV disease, we determined the phenotypes of immune cells in BAL 
cells from RGE-pretreated or co-treated mice upon RSV infection (Figure 6). Flow cytometry analysis 
showed that the numbers of CD8+CD3+CD45+ T cells in mice pretreated and cotreated with RGE were 
significantly increased compared to those in untreated mice with RSV infection (Figure 6A). Dendritic 
cells play an important role in T cell differentiation and in the initiation of protective immunity or 
pathogenic responses to pathogens. In mice, all dendritic cells express the integrin CD11c and their 
subsets are further defined based on the expression of the myeloid marker CD11b [30]. The numbers of 
CD11b−CD11c+F4/80−CD45+ and CD11b+CD11c+F4/80−CD45+ phenotypic dendritic cells in BAL 
from mice pretreated and cotreated with RGE were increased compared to those in untreated mice that 
were infected with a low dose of RSV (1 × 105 PFU) (Figure 6B,C). At a high dose of RSV (1 × 106 PFU) 
infection of mice, the cellularity of both CD8+ T cells and CD11c+ dendritic cells was significantly 
increased (Figure 6). In contrast to the low dose RSV groups, treatment with RGE did not significantly 
change the cellularity of these BAL cells in groups of mice that were infected with a high dose of RSV 
(1 × 106 PFU). These results suggest that RGE treatment can increase dendritic cell populations to a 
certain level depending on a dose of RSV infection. To further understand the effects of RGE in 
conferring protection against RSV infection, the levels of intracellular cytokine IFN-γ secreting cells in 
BAL from mice were determined by flow cytometry at day 5 post infection. When we determined the 
levels of intracellular IFN-γ secreting BAL cells using flow cytometry, the numbers of RSV F-specific 
IFN-γ-secreting CD8+ T cells in the mice pretreated and co-treated with RGE were significantly 
increased compared to those in the untreated mice with RSV infection (Figure 7A,B). In addition, we 
observed that the numbers of RSV-specific IFN-γ secreting CD4+ and CD8+ T cells in mice pretreated 
and cotreated with RGE was significantly enhanced compared to those in the RSV-infected untreated mice 

 



Nutrients 2015, 7 1030 
 
(Figure 7A,C). The effects of RGE treatment on increasing IFN-γ secreting CD4+ and CD8+ T cells in 
BALF were more prominent when a low dose of RSV (1 × 105 PFU) was used to infect mice. Therefore, 
the possible mechanism is that RGE treatment exhibits protective effects on RSV infection via modulation 
of IFN-γ-secreting T cell responses. 

 

Figure 6. In vivo effects of red ginseng extract (RGE) on phenotypes of bronchoalveolar 
lavage cells from mice infected with respiratory syncytial virus (RSV). Bronchoalveolar 
lavage (BAL) was collected five days after RSV challenge, stained with CD45, CD3, CD8α, 
CD11b, CD11c, and analyzed by flow cytometry. (A) CD8+CD3+CD45+ T cells; (B) 
CD11b−CD11c+F4/80−CD45+ dendritic cells; (C) CD11b+CD11c+F4/80−CD45+ dendritic 
cells. Values are the mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001. RSV only: naïve 
mice infected with RSV in PBS, Pre RGE + RSV: naïve mice were pretreated intranasally 
once with RGE (4 mg per mouse) 24 h prior to infection with RSV, Co RGE + RSV: naive 
mice were once cotreated intranasally with the mixture of RGE (4 mg per mouse) and RSV. 

 

Figure 7. Cont. 
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Figure 7. Phenotypes of interferon (IFN)-γ secreting T cells in bronchoalveolar lavage fluids 
(BALF) from mice with RGE treatment and respiratory syncytial virus (RSV) infection. BAL 
cells were harvested, stained with CD45, CD3, CD8α, CD11b, CD11c, and IFN-γ antibodies, 
and analyzed by flow cytometry. IFN-γ secreting T cells were presented as total numbers 
per mouse. (A) Flow cytometry of RSV F peptide specific CD8+IFN-γ+ T cells and RSV G 
peptide specific CD8+IFN-γ+ T cells. Numbers in dot plots indicate the cell percentages of 
double positive population; (B) Numbers of RSV F peptide specific CD8+IFN-γ+ T cells; (C) 
Numbers of RSV G peptide specific CD8+IFN-γ+ T cells. Values are the mean ± SEM. * p 
< 0.05; ** p < 0.01; *** p < 0.001. RSV only: naïve mice infected with RSV in PBS, Pre 
red ginseng extract (RGE) + RSV: naïve mice were pretreated once intranasally with RGE (4 
mg per mouse) 24 h prior to infection with RSV, Co RGE + RSV: naive mice were treated 
once intranasally with the mixture of RGE (4 mg per mouse) and RSV. 

4. Discussion 

Viral respiratory tract infections can lead to severe disease at all ages, but prevention is not available 
for most respiratory viruses. Thus, effective disease-limiting therapy is urgently required. Panax ginseng 
is one of the most well studied herbal medicines and appears to have multiple effects including an 
immunomodulatory function and a potential antiviral activity. However, the potential immunomodulatory 
and antiviral effects of ginseng on RSV infection remain unknown. We have investigated whether RGE 
has preventative and protective effects against RSV infection. RGE protected human epithelial cells 
from RSV-induced cytopathogenic formation. RGE treatment significantly inhibited the replication of 
RSV in human epithelial cells in vitro. In addition, RGE interfered with RSV-induced pro-inflammatory 
cytokine production in murine dendritic and macrophage-like cell lines. More importantly, RGE  
pre-treatment or co-treatment of mice exhibited beneficial effects on diminishing illness as demonstrated 
by reduced weight loss during RSV infection in a mouse model. The treatment of RGE improved lung 
viral clearance and enhanced the production of IFN-γ cytokine secreting cells. Overall, these results 
suggest that ginseng might have preventative and protective effects against RSV infection. RSV was 
found to induce significant cell death of HEp2 cells, which probably due to RSV-induced damage to the 
cells as previously reported [3,31]. The treatment of RGE on RSV-infected epithelial cells resulted in 
partial protection from cell death induced by RSV infection and also significant inhibition of the in vitro 
growth of RSV. Inhibition of RSV-induced cell death by RGE treatment might have been associated 
with antioxidant activity of RGE, at least in part through interference with RSV-induced cellular 
oxidative damage [32–35]. At low MOIs of 0.25 to 0.5, RSV-induced cell death was minimal but the 
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RGE-mediated inhibition of RSV growth was significantly higher than that observed at the high dose of 
MOI. This suggests that RGE may have an antiviral function on RSV, which is more effective at low 
MOIs. In contrast to the effect of RGE on RSV growth, the RGE-mediated inhibition of TNF-α 
inflammatory cytokine production was more dependent on the concentration of RGE rather than RSV 
MOI (Figure 3). It seems to be possible that RGE may have dual mechanisms of anti-RSV activity and 
an anti-inflammatory effect upon RSV infection. In general, control of lung viral loads is an important 
parameter in assessing protection against RSV since a positive correlation was reported between viral 
replication and clinical disease during natural or experimental infections [36,37]. In an in vivo model, 
the treatment of mice with RGE resulted in lowering lung viral loads upon RSV infection. A possible 
mechanism is that RGE-mediated inhibition of both RSV replication and RSV-induced cell death might 
have contributed to improving lung viral clearance in RGE-treated mice as well as lowering or 
preventing weight loss. The severity of human respiratory virus disease has been associated with 
hypercytokinemia. A wide range of pro-inflammatory cytokines and chemokines such as TNF-α and  
IL-8 are produced by airway epithelial cells and macrophages in response to viral infection, leading to 
recruitment and activation of macrophages, dendritic cells and neutrophils, all of which are involved in viral 
lung inflammation [38–40]. T helper type 2 immune responses such as high levels of IL-4 versus IFN-γ 
and the release of IL-5 and IL-13 cytokines are known to contribute to eosinophil recruitment to the lung, 
goblet cell formation from epithelial cells, mucus production and airway hyperresponsiveness [41]. The 
broad-spectrum antiviral action of IFN-γ may have a correlation with T cell immunity to viral infections. 
A high level of CD8 T cell immunity and IFN-γ production was reported to be correlated with protection 
against RSV [42,43]. In previous study, cytotoxic CD8 T lymphocytes and IFN-γ were reported to have 
dual effects: an effector function for virus control, and immunopathology after infection with RSV [44]. 
A recent study demonstrated that the ginsenosides from Panax ginseng C.A. Meyer reduced IL-4 
production but increased IFN-γ production in an ovalbumin-induced murine asthma model [45]. Thus, 
IFN-γ producing cells in the RGE-treated mice might have contributed to improving the clinical 
outcomes such as preventing weight loss and enhancing lung viral clearance. Ginseng inhibited the 
inflammatory responses in lipopolysaccharide-induced macrophage activation in vitro and in vivo animal 
models [46]. Oral administration of RGE resulted in an increased survival rates and lowering lung viral 
loads of mice upon infection with 2009 pandemic H1N1 virus [47]. It is a highly significant finding in 
this study that the treatment of RGE increased the population of dendritic cells and enhanced the 
production of antiviral cytokine IFN-γ in BAL fluids upon RSV infection. Dendritic cells are unique 
professional antigen-presenting cells capable of stimulating naïve T cells in primary immune response, 
and are more potent than monocyte/macrophages or B cells [48]. Flow cytometry analysis of BAL cells 
from mice upon RSV infection showed that RGE might be enhancing the cell numbers of CD8+ T 
lymphocytes, early response related-CD11c+CD11b− dendritic cells, and late response-dominant  
related-CD11c+CD11b+ dendritic cells [49,50]. Furthermore, detailed analysis of BAL cells revealed 
that RGE treatment enhanced the production of IFN-γ secreting RSV specific-CD4 T cells as well as 
CD8 T cells. Taken together, RGE-mediated increases in CD8+ T cells and CD11c+ dendritic cells can 
be a mechanism contributing to desirable clinical outcomes of diminishing or preventing mouse body 
weight loss upon infection with RSV even though their molecular mechanisms still remain to be 
determined. Since ginsenosides are active components of ginseng, it would be informative to test the 
biological activities of major ginsenosides using the mouse model of RSV infection in the future. 
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5. Conclusions 

In summary, this study suggests multiple mechanisms through which ginseng might provide 
protective efficacy against RSV. RGE inhibited RSV-induced cell death, RSV replication, and the 
production of pro-inflammatory cytokines in vitro. In addition, RGE treatment in mice upon RSV 
infection resulted in diminishing mouse body weight loss, lowering lung viral loads, and enhancing 
antiviral IFN-γ production as well as increasing CD8+ T cells and CD11c+ dendritic cells. 
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