264 research outputs found

    Spatio-Temporal Variability of Aerosol Optical Depth, Total Ozone and NO(2)Over East Asia: Strategy for the Validation to the GEMS Scientific Products

    Get PDF
    In this study, the spatio-temporal variability of aerosol optical depth (AOD), total column ozone (TCO), and total column NO2(TCN) was identified over East Asia using long-term datasets from ground-based and satellite observations. Based on the statistical results, optimized spatio-temporal ranges for the validation study were determined with respect to the target materials. To determine both spatial and temporal ranges for the validation study, we confirmed that the observed datasets can be statistically considered as the same quantity within the ranges. Based on the thresholds of R-2>0.95 (temporal) and R>0.95 (spatial), the basic ranges for spatial and temporal scales for AOD validation was within 30 km and 30 min, respectively. Furthermore, the spatial scales for AOD validation showed seasonal variation, which expanded the range to 40 km in summer and autumn. Because of the seasonal change of latitudinal gradient of the TCO, the seasonal variation of the north-south range is a considerable point. For the TCO validation, the north-south range is varied from 0.87 degrees in spring to 1.05 degrees in summer. The spatio-temporal range for TCN validation was 20 min (temporal) and 20-50 km (spatial). However, the nearest value of satellite data was used in the validation because the spatio-temporal variation of TCN is large in summer and autumn. Estimation of the spatio-temporal variability for respective pollutants may contribute to improving the validation of satellite products

    Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array

    Get PDF
    Embryoid bodies have a number of similarities with cells in gastrulation, which provides useful biological information about embryonic stem cell differentiation. Extensive research has been done to study the control of embryoid body-mediated embryonic stem cell differentiation in various research fields. Recently, microengineering technology has been used to control the size of embryoid bodies and to direct lineage specific differentiation of embryonic stem cells. However, the underlying biology of developmental events in the embryoid bodies of different sizes has not been well elucidated. In this study, embryoid bodies with different sizes were generated within microfabricated PEG microwell arrays, and a series of gene and molecular expressions related to early developmental events was investigated to further elucidate the size-mediated differentiation. The gene and molecular expression profile suggested preferential visceral endoderm formation in 450 μm embryoid bodies and preferential lateral plate mesoderm formation in 150 μm embryoid bodies. These aggregates resulted in higher cardiac differentiation in 450 μm embryoid bodies and higher endothelial differentiation in 150 μm embryoid bodies, respectively. Our findings may provide further insight for understanding embryoid body size-mediated developmental progress.National Science Foundation (U.S.) (CAREER Award DMR0847287)United States. Office of Naval Research (Naval Research Young National Investigator Award)National Institutes of Health (U.S.) (HL092836, EB02597, AR057837

    KITENIN increases invasion and migration of mouse squamous cancer cells and promotes pulmonary metastasis in a mouse squamous tumor model

    Get PDF
    AbstractKAI1 C-terminal interacting tetraspanin (KITENIN) is reported to promote metastasis in mouse colon cancer models. We investigated the role of KITENIN on the progression of squamous cell carcinoma (SCC). In a preliminary clinical study using resected tissues from head and neck SCC patients, KITENIN was highly expressed in tumors and metastatic lymph nodes, while KAI1 was more increased in adjacent mucosa than in tumor. KITENIN-transfected mouse squamous cancer (SCC VII/KITENIN) cells showed significantly higher invasion, migration, and proliferation than empty vector-transfected cells. In syngeneic mouse squamous tumor models, more increased tumor volume and enhanced lung metastasis were found in SCC VII/KITENIN cells-injected mice. Thus, KITENIN increases invasion and migration of squamous cancer cells and thereby promotes distant metastasis in mouse squamous tumor models

    Effect of Achyranthes bidentata

    Get PDF
    The present study investigated the antiobesity effect of Achyranthes bidentata Blume root water extract in a 3T3-L1 adipocyte differentiation model and rats fed with a high-fat diet. To investigate the effect of Achyranthes bidentata Blume on adipogenesis in vitro, differentiating 3T3-L1 cells in adipocyte-induction media were treated every two days with Achyranthes bidentata Blume at various concentrations (1 to 25 μg/mL) for eight days. We found that Achyranthes bidentata Blume root inhibited 3T3-L1 adipocyte differentiation without affecting cell viability, and Western blot analysis revealed that phospho-Akt expression was markedly decreased, whereas there was no significant change in perilipin expression. Furthermore, administration of Achyranthes bidentata Blume root (0.5 g/kg body weight for six weeks) to rats fed with a high-fat diet significantly reduced body weight gain without affecting food intake, and the level of triglyceride was significantly decreased when compared to those in rats fed with only a high-fat diet. These results suggest that Achyranthes bidentata Blume root water extract could have a beneficial effect on inhibition of adipogenesis and controlling body weight in rats fed with a high-fat diet

    Protective Effect of Sauchinone Against Regional Myocardial Ischemia/Reperfusion Injury: Inhibition of p38 MAPK and JNK Death Signaling Pathways

    Get PDF
    Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P < 0.05). Accordingly, the phosphorylation of JNK and p38 was significantly attenuated, while that of ERK1/2, Akt and GSK-3β was not affected. It is suggested that sauchinone protects against regional myocardial I/R injury through inhibition of phosphorylation of p38 and JNK death signaling pathways

    The Expression Patterns of FAM83H and PANX2 Are Associated With Shorter Survival of Clear Cell Renal Cell Carcinoma Patients

    Get PDF
    FAM83H is primarily known for its role in amelogenesis; however, recent reports suggest FAM83H might be involved in tumorigenesis. Although the studies of FAM83H in kidney cancer are limited, a search of the public database shows a significant association between FAM83H and pannexin-2 (PANX2) in clear cell renal cell carcinomas (CCRCCs). Therefore, we evaluated the clinicopathological significance of the immunohistochemical expression of FAM83H and PANX2 in 199 CCRCC patients. The expression of FAM83H and PANX2 were significantly associated with each other. In univariate analysis, individual, and co-expression pattern of FAM83H and PANX2 was significantly associated with shorter overall survival (OS) and relapse-free survival (RFS) of CCRCC patients: nuclear expression of FAM83H (OS; P &lt; 0.001, RFS; P &lt; 0.001), cytoplasmic expression of FAM83H (OS; P &lt; 0.001, RFS; P &lt; 0.001), nuclear expression of PANX2 (OS; P &lt; 0.001, RFS; P &lt; 0.001), cytoplasmic expression of PANX2 (OS; P &lt; 0.001, RFS; P &lt; 0.001), co-expression pattern of nuclear FAM83H and nuclear PANX2 (OS; P &lt; 0.001, RFS; P &lt; 0.001). In multivariate analysis, nuclear expression of FAM83H (OS; P &lt; 0.001, RFS; P = 0.003) and the co-expression pattern of nuclear FAM83H and PANX2 (OS; P &lt; 0.001, RFS; P &lt; 0.001) were independent indicators of shorter survival of CCRCC patients. Cytoplasmic expression of FAM83H was associated with shorter RFS (P = 0.030) in multivariate analysis. In Caki-1 and Caki-2 CCRCC cells, knock-down of FAM83H decreased PANX2 expression and cell proliferation, and overexpression of FAM83H increased PANX2 expression and cell proliferation. These results suggest that FAM83H and PANX2 might be involved in the progression of CCRCC in a co-operative manner, and their expression might be used as novel prognostic indicators for CCRCC patients
    corecore