456 research outputs found
Anti-oxidant and anti-inflammatory effects of rice bran and green tea fermentation mixture on lipopolysaccharideinduced RAW 264.7 macrophages
Purpose: To investigate the anti-inflammatory and anti-oxidant properties of an enzyme bath of Oryza sativa (rice bran) and Camellia sinensis O. Kuntz (green tea) fermented with Bacillus subtilis (OCB). Methods: The anti-oxidant effects of OCB were assessed by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and flow cytometry. The anti-inflammatory effects of OCB were assessed by a nitric oxide (NO) assay. Enzyme-linked immunosorbent assay and real-time polymerase chain reaction were used to quantify expression of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The major compounds of OCB were identified using high performance liquid chromatography (HPLC) analysis. Results: OCB had no cytotoxic effect on LPS-stimulated macrophages or peripheral blood mononuclear cells up to 1 mg/mL. OCB displayed anti-oxidant effects comparable to those of ascorbic acid and reduced reactive oxygen species (ROS) levels in target cells. OCB treatment of LPSstimulated mavrophages decreased nitric oxide (NO), NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and key pro-inflammatory cytokine expressions, suggesting that OCB acts as an anti-oxidant and anti-inflammatory agent by reducing ROS levels and inhibiting pro-inflammatory mediators. The main effector compounds in OCB were epicatechin gallate, cathechin, synigrin acid, epicathechin, epigallocatechin gallate, rutin, and isoquercetin, which are known anti-oxidants. Conclusion: OCB fermentation product may be used as synergistic adjuvant therapy for inflammatory diseases. Keywords: Rice bran, Green tea, Bacillus subtilis, Enzyme bath, Anti-oxidant, Anti-inflammatio
Dietary isothiocyanate sulforaphene induces reactive oxygen species, caspase -9, -8, -3-dependent apoptosis and modulates PTEN/PI3Kinase in human cervical cancer cells
Purpose: To investigate the apoptotic activity, cell proliferation inhibition and different signaling protein expressions after treatment with a new isothiocyanate, sulforaphene, in human cervical cancer (HeLa) cells. Methods: Cytotoxicity was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after sulforaphene treatment for 3, 6, 12 and 24 h. Apoptosis assay, cell cycle analysis, intracellular oxygen species (ROS) measurement, mitochondrial membrane depolarization and western blot analysis were performed in four time-intervals to explore sulforaphene activity. Results: HeLa cell viability was reduced by sulforaphene dose and time dependently. ROS plays a causative role in sulforaphene induced cytotoxicity and apoptosis during which stimulation of Bax and blocking of Bcl2 were involved. Mitochondrial membrane potential depletion and cytochrome C, AIF modulation suggest mitochondrial pathway for the apoptosis. Activation of caspase -9, -8 and -3 in treated HeLa cells demonstrated caspase-dependent apoptosis by sulforaphene. Again, sulforaphene induced HeLa cell proliferation inhibition was evidenced by cell cycle arrest and PTEN/PI3Kinase modulation. Conclusion: Dietary sulforaphene induces HeLa cell apoptosis by enhancing intracellular ROS levels, thereby activating multiple apoptotic signal cascades. Therefore, sulforaphene is a potential candidate for anticancer therapy. Keywords: Sulforaphene, HeLa cells, Apoptosis, ROS, Caspase activation, PTEN, PI3Kinas
Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3)
AbstractArsenic trioxide (As2O3) inhibits cell growth and induces apoptosis in certain types of cancer cells including acute promyelocytic leukemia, prostate and ovarian carcinomas, but its effect on response of tumor cells to ionizing radiation has never been explored before. Here we demonstrate that As2O3 can sensitize human cervical cancer cells to ionizing radiation both in vitro and in vivo. As2O3 in combination with ionizing radiation have a synergistic effect in decreasing clonogenic survival and in the regression of established human cervical tumor xenografts. Pretreatment of the cells with As2O3 also synergistically enhanced radiation-induced apoptosis. Apoptosis of the cells by combined treatment of As2O3 and radiation was associated with reactive oxygen species generation and loss of mitochondrial membrane potential, resulting in the activation of caspase-9 and caspase-3. The combined treatment also resulted in an increased G2/M cell cycle distribution at the concentration of As2O3 which did not alter cell cycle when applied alone. These results indicate that As2O3 can synergistically enhance radiosensitivity of human cervix carcinoma cells in vitro and in vivo, suggesting a potential clinical applicability of combination treatment of As2O3 and ionizing radiation in cancer therapies
Total joint reconstruction using computer-assisted surgery with stock prostheses for a patient with bilateral TMJ ankylosis
Backgrounds
The purpose of this study is to discuss the total joint reconstruction surgery for a patient with recurrent ankylosis in bilateral temporomandibular joints (TMJs) using three-dimensional (3D) virtual surgical planning, computer-aided manufacturing (CAD/CAM)-fabricated surgical guides, and stock TMJ prostheses.
Case presentation
A 66-year-old female patient, who had a history of multiple TMJ surgeries, complained of severe difficulty in eating and trismus. The 3D virtual surgery was performed with a virtual surgery software (FACEGIDE, MegaGen implant, Daegu, South Korea). After confirmation of the location of the upper margin for resection of the root of the zygoma and the lower margin for resection of the ankylosed condyle, and the position of the fossa and condyle components of stock TMJ prosthesis (Biomet, Jacksonville, FL, USA), the surgical guides were fabricated with CAD/CAM technology. Under general anesthesia, osteotomy and placement of the stock TMJ prosthesis (Biomet) were carried out according to the surgical planning. At 2 months after the operation, the patient was able to open her mouth up to 30 mm without complication.
Conclusion
For a patient who has recurrent ankylosis in bilateral TMJs, total joint reconstruction surgery using 3D virtual surgical planning, CAD/CAM-fabricated surgical guides, and stock TMJ prostheses may be an effective surgical treatment option
Organosilicate Spin-on Glasses II. Effect of Physical Modification on Mechanical Properties
Porous copolymer films were synthesized from a methylsilsequioxane:1,2-bis(trimethoxysilyl)ethane (MSSQ:BTMSE) matrix and either an aromatic-core or aliphatic-core porogen at 10, 20, or 30 wt % porogen loading. Films were characterized using scanning electron microscopy (SEM), IR spectroscopy, and ellipsometry. Depth-sensing indentation experiments were performed to measure apparent film modulus, E, and hardness, H. Indentation load-displacement traces and SEM images were used to determine the threshold load for cracking, Pc. The aliphatic-core porogen produced a greater porosity film than the aromatic-core porogen for 10 wt % loading and smaller porosity films for 20 and 30 wt % loadings. IR spectra, normalized for film thickness and density, indicated decreased O-Si-O networking in porous MSSQ:BTMSE films. The combination of increased porosity and decreased O-Si-O networking led to a decreased apparent E and H relative to the unmodified MSSQ:BTMSE film. However, low-porosity (approximately 7%), aliphatic-porogen MSSQ:BTMSE films are optimized relative to unmodified MSSQ with smaller dielectric constant and greater E and H.This work is supported by the Korean Collaborative Project for Excellence in Basic System IC Technology (System IC 2010: 98-
B4-C0-00-01-00-02). Financial support from the Ministry of Science and Technology (MOST) and the Korean Ministry of Education
through the National Research Laboratory Fund and the Brain Korea 21 Program, respectively, is also greatly acknowledged
- …