25 research outputs found

    Implementation of Limit States and Load Resistance Design of Slopes

    Get PDF
    A logical framework is developed for load and resistance factor design (LRFD) of slopes based on reliability analysis. LRFD of slopes with resistance factors developed in this manner ensures that a target probability of slope failure is not exceeded. Three different target probabilities of failure (0.0001, 0.001 and 0.01) are considered in this report. The ultimate limit state for slope stability (formation of a slip surface and considerable movement along this slip surface) is defined using the Bishop simplified method with a factor of safety equal to unity. Gaussian random field theory is used to generate random realizations of a slope with values of strength and unit weight at any given point of the slope that differ from their mean by a random amount. A slope stability analysis is then performed for each slope realization to find the most critical slip surface and the corresponding driving and resisting moments. The probability of slope failure is calculated by counting the number of slope realizations for which the factor of safety did not exceed 1 and dividing that number by the total number of realizations. The mean of the soil parameters is adjusted and this process repeated until the calculated probability of failure reaches to the target probability of failure. Optimal resistance and load factors are obtained by dividing the resisting and driving moments corresponding to the most probable ultimate limit state by the nominal values of resisting and driving moments. The main goal of this study was to provide specific values of resistance and load factors to implement in limit states and load resistance design of slopes in the context of transportation infrastructure. This report discusses the concepts of load and resistance factors, target probability of failure and the ultimate limit state equation in the context of slope stability analysis. It then presents a detailed algorithm for resistance factor calculation by using reliability analysis. Six cases of real slopes designed and constructed by INDOT are examined by using undrained shear strengths in order to illustrate the LRFD procedure and validate the recommended resistance and load factors

    Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices

    Get PDF
    Funding Information: This work was supported by the European Commission (H2020, 1D-NEON, grant agreement ID: 685758). J.M.K. and L.G.O. acknowledge the support from the U.K. Research and Innovation (EPSRC, EP/P027628/1). We thank Y. Bernstein and J. Faulkner for helping with grammar check. Funding Information: Acknowledgments Funding:ThisworkwassupportedbytheEuropeanCommission(H2020,1D-NEON,grant agreementID:685758).J.M.K.andL.G.O.acknowledgethesupportfromtheU.K.Researchand Innovation(EPSRC,EP/P027628/1).W ethankY .BernsteinandJ.Faulknerforhelpingwith grammarcheck.Authorcontributions:S.L.andJ.M.K.conceivedtheproject.S.L.,L.G.O.,P .B., R.Martins,andJ.M.K.supervisedtheproject.S.L.andH.L.developedF-PD.S.L.,Y .-W .L., G.-H.A., D.-W .S., J.I.S.,andS.C.developedF-SC.C.L.F ., A.S.,R.I.,P .B., andR.Martinsdevelopedfiber transistor.S.L.,H.L.,andS.C.developedF-LED.ThefiberdeviceswereevaluatedbyS.L.,H.W .C., D.-W .S., H.L.,S.J.,S.D.H.,S.Y .B., S.Z.,W .H.-C., Y .-H.S., X.-B.F ., T .H.L., J.-W .J., andY .K. The developmentofweavingprocesswasconductedbyS.L.,H.W .C., F .M.M., P .J., andV .G.C. Thelaser interconnectionwasdevelopedbyS.L.,H.W .C., K.U.,M.E.,andM.S.Thetextiledemonstrations werecharacterizedbyS.L.,H.W .C., D.-W .S., J.Y ., S.S.,U.E.,S.N.,A.C.,A.M.,R.Momentè,J.G.,N.D., S.M.,C.-H.K.,M.L.,A.N.,D.J.,M.C.,andY .C. ThismanuscriptwaswrittenbyS.L.andJ.M.K.and reviewed by H.W .C., D.-W .S., M.C.,L.G.O., P .B., E.F ., and G.A.J.A. All authors discussed the results andcommentedonthemanuscript.Competinginterests:Theauthorsdeclarethattheyhave nocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatethe conclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials. Publisher Copyright: Copyright © 2023 The Authors, some rights reserved.An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.publishersversionpublishe

    Critical State-Based Mohr–Coulomb Bounding Surface Model for Sand under Monotonic Shearing

    No full text
    This study proposes a new constitutive model to describe the smooth transition from an elastic to a plastic response in sands under monotonic shearing. The model modifies the conventional Mohr–Coulomb model by considering the concept of a bounding surface and critical state soil mechanics. The friction angle consists of the critical state friction angle and a portion of the dilatancy angle, which is determined from the distance to the critical state line. Incorporating the bounding surface and the dilatancy angle into constitutive relationships for Toyoura sand produces numerical simulation results that have good agreement with the experimental results

    Numerical simulation of penetration in sand

    No full text
    This thesis presents a method to simulate penetration of a probe, penetrometer or pile in sand. This is one of the most challenging problems in geomechanics, involving three sources of nonlinearity: material nonlinearity because of the complex constitutive response of sand, geometric nonlinearity caused by extreme deformation of soil during penetration, and contact nonlinearity along the interface between the probe and the sand. The present research focuses on how to address these nonlinearities in theoretical simulations. To describe the complex stress-strain relationship of sand, a sophisticated bounding surface model for sand with consideration of fabric and its evolution during loading was developed. In bounding surface models, hardening often relies on the distance from the current stress state to the bounding surface in stress space. This thesis proposes a rigorous method to determine distances to an arbitrary surface in stress space. It starts by examining operations on stress variables defined in the π plane. Algorithms for determination of an image point on a surface are then presented as a function of the location of the current stress state with respect to the surface. For points within the surface, the bisection method is used; otherwise, the secant method is used. Implementation of the proposed algorithm locates the image point on a surface in stress space with accuracy and rigor, providing an accurate measure of the distance to the surface that can be used in hardening or flow rules. The bounding surface plasticity model is based on critical-state soil mechanics. The bounding surface controls sand stiffness through a relationship that depends on the distance from the current state to the bounding surface. Dilatancy, the plastic volume change caused by plastic shear deformation, is captured through a newly introduced phase transformation line. The fabric is quantified based on the distribution of contact normals between particles; it affects the location of the phase transformation line (thus, the dilatancy). The fabric evolves in such a way as to align it with the direction of loading. Simulation results using the model are in excellent agreement with wide-ranging test data for Toyoura sand. Subsequently, algorithms are proposed to simulate penetration in sand using the material point method (MPM). Background grids are structured but not uniform, with hanging nodes used to improve numerical efficiency. Moving and compressible background grids are used to handle velocity boundary conditions. To deal with contact between a penetrometer and sand, multi-body MPM techniques are implemented. Sand is modeled using the advanced bounding surface model; the interface between sand and steel is modeled using Coulomb\u27s friction law modified based on the bounding surface model. The MPM method is validated through simulation of calibration chamber cone penetration tests

    Formulation of a Yield Surface for Sand Based on the Elastic Threshold Strain

    No full text
    The present study proposes a rigorous expression of a yield function for sand based on the linear elastic threshold strain concept and empirical expression for the maximum shear modulus. The new yield function was calibrated for Toyoura sand. The calibration results show that the proposed yield surfaces are nonlinear curves that depend on the void ratio of sand in the p′-q plane, whereas the linear lines have been adopted in the bounding surface modeling of sand. This study also found that elliptic yield surfaces are the best fitted with the proposed yield surface and they can be used as alternatives to the proposed yield surface under the undrained shearing where the void ratio (or density) of sand is fixed

    Development of Load and Resistance Factor Design for Ultimate and Serviceability Limit States of Transportation Structure Foundations

    Get PDF
    Most foundation solutions for transportation structures rely on deep foundations, often on pile foundations configured in a way most suitable to the problem at hand. Design of pile foundation solutions can best be pursued by clearly defining limit states and then configuring the piles in such a way as to prevent the attainment of these limit states. The present report develops methods for load and resistance factor design (LRFD) of piles, both nondisplacement and displacement piles, in sand and clay. With the exception of the method for design of displacement piles in sand, all the methods are based on rigorous theoretical mechanics solutions of the pile loading problem. In all cases, the uncertainty of the variables appearing in the problem and of the relationships linking these variables to the resistance calculated using these relationships are carefully assessed. Monte Carlo simulations using these relationships and the associated variabilities allow simulation of resistance minus load distributions and therefore probability of failure. The mean (or nominal) values of the variables can be adjusted so that the probability of failure can be made to match a target probability of failure. Since an infinite number of combinations of these means can be made to lead to the same target probability of failure, we have developed a way to determine the most likely ultimate limit state for a given probability of failure. Once the most likely ultimate limit state is determined, the values of loads and resistances for this limit state can be used, together with the values of the mean (or nominal) loads and resistances to calculate load and resistance factors. The last step in the process involves adjusting the resistance factors so that they are consistent with the load factors specified by AASHTO. Recommended resistance factors are then given together with the design methods for which they were developed

    Three-Dimensional Upper Bound Solution to Estimate Soil Thrust of a Track System on Saturated Clay Slopes under Undrained Conditions

    No full text
    This study proposes a three-dimensional upper bound solution for estimating the soil thrust of tracked vehicles on saturated clay slopes. The present study considered block, triangular wedge, and trapezoidal wedge failure modes to formulate an upper bound solution for each. The analytical solution for soil thrust was determined as the minimum upper bound solution among those for each failure mode. This analytical solution was validated through numerical simulations that modeled track-ground interactions. Parametric studies, based on the upper bound solution, assessed the impact of track system shape, vehicle weight, undrained shear strength, and ground slope on soil thrust. The analytical solutions and parametric studies provide a rapid method for assessing vehicle operability on clay slopes and offer references for designing tracked vehicles suitable for site conditions

    Theoretical Evaluation for Soil Thrust of Single-Track System over Clay Slope via Upper Bound Analysis

    No full text
    This study aimed to theoretically evaluate soil thrust on a clay slope as a reaction force associated with the motion of an off-road tracked vehicle. The existing concept of the potential failure modes of a clay block on flat ground has extended to determine the soil thrust of sloped clay ground. Based on the upper-bound limit analysis, the soil thrust under the most critical failure was derived for three potential failure modes: block, triangular-wedge, and trapezoidal-wedge failures. Specifically, the influence of the slope angle, the shear strength of clay, the weight of a vehicle, and the geometry of a track system on the soil thrust was investigated. Only the block and triangular wedge failure modes were able to occur, and the geometry of a single-track system could lead to different failure modes. Under the block failure mode, the soil thrust decreased as the slope became stiff, and the vehicle weight increased. On the other hand, the soil thrust decreased as the slope angle decreased under the triangular-wedge failure mode

    Analysis of Vertical Earth Pressure Acting on Box Culverts through Centrifuge Model Test

    No full text
    Due to the lack of surface space, most structures are heading underground. The box culvert is underground infrastructure and serves to protect the buried structure from the underground environments, but it has a different characteristic from other structures in that the inner space is empty. Therefore, in this study, the vertical earth pressure which is the most significant effective stress acting on a box culvert was measured by conducting a geotechnical centrifuge model test. A box culvert was installed following the embankment installation method, and the vertical earth pressure acting on it was measured considering the cover depth, gravitational acceleration, and loading and unloading conditions. The soil pressure measured was greater than the existing theoretical value under high cover depth and the unloading condition, which is considered as the variability of many soils or the residual stress acting under the loading condition. Finally, a goodness-of-fit test was conducted as a part of variability analysis. The measured earth pressure was found to be considerably larger than the existing theoretical value, and the variability was large as well. This means the existing theoretical equation is under-designed, which should be reflected in future designs

    The Clinical Observation on the Volume of Blood Transfused during Anesthesia

    No full text
    corecore