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EXECUTIVE SUMMARY

IMPLEMENTATION OF LIMIT STATES AND
LOAD RESISTANCE DESIGN OF SLOPES

Introduction

A logical framework is developed for load and resistance factor

design (LRFD) of slopes based on reliability analysis. LRFD of

slopes with resistance factors developed in this manner ensures

that a target probability of slope failure is not exceeded. Three

different target probabilities of failure (0.0001, 0.001, and 0.01) are

considered in this report. The ultimate limit state for slope

stability (formation of a slip surface and considerable movement

along this slip surface) is defined using the Bishop simplified

method with a factor of safety equal to unity. Gaussian random

field theory is used to generate random realizations of the slope

with values of strength and unit weight at any given point of the

slope that differ from their mean by a random amount. A slope

stability analysis is then performed for each slope realization to

find the most critical slip surface and the corresponding driving

and resisting moments. The probability of slope failure is

calculated by counting the number of slope realizations for which

the factor of safety did not exceed 1 and dividing that number by

the total number of realizations. The mean of the soil parameters

is adjusted and this process repeated until the calculated

probability of failure is equal to the target probability of failure.

Optimal resistance and load factors are obtained by dividing the

resisting and driving moments corresponding to the most probable

ultimate limit state by the nominal values of resisting and driving

moments. The main goal of this study was to provide specific

values of resistance and load factors to implement in limit states

and load resistance design of slopes in the context of transporta-

tion infrastructure. This report introduces the concept of load and

resistance factors, the target probability of failure for slopes, and

the ultimate limit state equation. It then presents a detailed

algorithm for resistance factor calculation by using reliability

analysis. Six slope stability cases provided by INDOT are

examined in order to illustrate the LRFD procedure and validate

the recommended resistance and load factors.

Findings

The main goal of this study was to provide more specific

guidance on values of resistance factors to implement in load and

resistance factor design of slopes, with specific illustrations.

The effect of slope geometry was investigated. It was shown

that, when realistic values of COV and scale of fluctuation of

the soil properties were assumed (values close to those of set D),

the resulting resistance factor values did not depend strongly on

slope geometry, suggesting that the rigorous reliability analysis

algorithm proposed in the present study can be used effectively

to produce load and resistance factors for use in design of

slopes.

The LRFD methodology was used to check the stability of a

total of six slope cases (cases A through F) provided by INDOT.

The short-term (undrained) properties of soil were used to analyze

all cases. For all the adopted target probabilities of failure, there

were strong linear correlations between the ratio RF of factored

resistance to factored load and FS.

Based on this study, the recommended resistance factors RF*

adjusted with respect to the proposed load factors LF* (LF�DL5

1.0 and LF�LL 5 1.2) are 0.75, 0.70, and 0.65 for Pf,T of 0.01 (1%),

0.001 (0.1%), and 0.0001 (0.01%), for undrained slopes respec-

tively.

Implementation

INDOT should start using the load and resistance factors

proposed in this research project in slope stability checks in

INDOT projects. As confidence in the application develops,

greater reliance on this very economical method of checking slope

stability will follow. Research opportunities for improvement of

these factors should be pursued.
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1. INTRODUCTION

1.1 Load and Resistance Factors

The main goal of slope design is to select the most
economical and safest geometry, which includes angle
and height of the slope. Traditionally, working stress
design has been used for evaluating the stability of
slopes, with a minimum factor of safety FSreq that must
be matched or exceeded. The main shortcoming of this
approach is that the values of FSreq are fairly consistent,
even for different types of slope, regardless of (1) the
geometry of the slope and (2) the degree of uncertainty
associated with loads inducing instability of the slope
and the resistance against the loads. As an illustration,
the minimum FS values recommended in the AASHTO
bridge design specifications (2) are 1.3 for soil and rock
parameters, 1.8 for abutments supported above a
retaining wall, and 1.5 otherwise.

Recently, load and resistance factor design has gained
attention in geotechnical engineering due to the possibility
that it offers of a more rational and economical design of
foundations (e.g., Basu and Salgado (16)) and geotechni-
cal structures. However, this possibility depends upon
the degree of rigor in the development of LRFD
methods. Development of LRFD for slopes is compu-
tationally expensive, but once a well-established LRFD
method for slopes is available, it will provide a more
consistent and reliable means of achieving safety in
slope design than working stress design.

LRFD is based on preventing events in which the
sum of factored loads exceeds the factored resistance:

RFð ÞRn§

X
LFið ÞQi,n ð1:1Þ

where RF and LFi are the resistance and load factors,
Rn is the nominal resistance, and Qn,i is the nominal (or
design) load.

In methods such as the Bishop Simplified Method,
loading in slope stability calculations is expressed
through driving moments. The driving moment due to
dead loads, denoted by Md,DL, originates from self-
weight of a potential sliding mass or permanent external
loads acting on the boundary of the sliding mass. The
driving moment due to live loads, denoted by Md,LL,
originates from nonpermanent loads on the crest of the
slope, such as vehicular loads. Resistances are expressed
through a resisting moment Mr. In terms of driving and
resisting moments, inequality (1.1) becomes:

RFð ÞMrn§

X
LFið ÞMdi,n ð1:2Þ

where the summation term would generally contain
terms due to permanent (dead) loads, live loads and
other load sources, such as seismic forces. In this report,
it contains only two terms, one due to dead and the
other to live loads.

The nominal resisting and driving moments are
calculated in a deterministic analysis using a limit
equilibrium method, such as the Bishop simplified
method, which has been shown, using limit analysis, to

produce accurate results under the most varied condi-
tions (3–6). An ultimate limit state (ULS) surface (i.e.,
‘‘failure’’ surface) of a slope is a surface for which Mr is
equal to the sum of Md,DL and Md,LL. Therefore, each
point on the failure surface is a triple of variables Mr,
Md,DL, and Md,LL leading to FS 5 1.

Considering now a slope with expected FS . 1 (so
with expected values of the three moment variables
within the failure surface), if the moments were
deterministic variables, then the chance of the slope
attaining failure (i.e., reaching FS # 1) would be zero.
If the variables are instead random variables, there is
a nonzero probability of FS # 1, as unfavorable
deviations of the variables from their means will place
the triple on or outside the failure surface. This is
illustrated graphically by Figure 1.1 for the very simple
case of only two variables (resistance R and load Q).
Each of the ellipses shown in the figure is a locus of
pairs of the two variables corresponding to the same
level of deviation from their expected values. If that
deviation is large enough, the ellipse becomes tangent to
the failure surface at one point, represented by the point
FP (for failure point, also known as design point) in
Figure 1.1. If the ellipse that is tangent to the failure
surface corresponds to a large deviation from the point
representing the means of the two variables, then the
probability of failure (the probability of attainment of
the limit state as defined by the failure surface) is small,
and vice-versa.

Resistance and load factors are calculated with
reference to the most probable ULS and the mean
state and are linked to the probability of failure
associated with these two states. For example, referring
to Figure 1.1, the resistance and load factors for the
case depicted in the figure are:

Figure 1.1 Failure surface, failure point, and equiprobable
ellipses of two random variables.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/23 1



RF~
RLS

mR

and LF~
QLS

mQ

ð1:3Þ

where RLS and QLS are the resistance and load at the
most probable ULS (or failure point FP); mR and mQ are
the means of resistance and load, respectively.

Using the same general procedure discussed in
connection with Figure 1.1, the load and resistance
factors are obtained by taking the ratios of the most
probable ULS values (the values at the design point) of
the resisting moment Mr, the driving moment Md,DL

caused by dead loads and the driving moment Md,LL

caused by live loads to their respective nominal values.
Mathematically, the resistance factor RF* and load
factors LF*

DL and LF*
LL are given by:

RF�~
MrjLS

Mrjn
, LF�DL~

Md,DLjLS

Md,DLjn
,

and LF�LL~
Md,LLjLS

Md,LLjn

ð1:4Þ

where Mr|LS is the Mr at the most probable ULS;
Md,DL|LS and Md,LL|LS are the Md,DL and Md,LL at the
most probable ULS, respectively; Mr|n is the nominal
Mr; Md,DL|n and Md,LL|n are the nominal Md,DL and
Md,LL.

The nominal values of the moments follow directly
from a deterministic slope stability analysis performed
with the nominal values of the problem variables (shear
strength parameters and unit weight for each soil
constituting the slope and any surcharge applied on the
boundaries of the slope). The nominal values of these
variables are their mean divided by any bias factor
considered. The resistance factors calculated using
Equation (1.4) correspond to the probability of failure
Pf of the slope defined by the mean values of the
problem variables and their probability distribution. If
slope design is to be performed for a target probability
of failure Pf,T and Pf,T is different from Pf, then the
resistance factors will not be useful for an engineer
attempting to use the resistance factors in design. This
means that, with the goal of obtaining resistance factors
that will be useful in slope design, an adjustment to the
nominal values of the problem variables is required
until Pf results equal to Pf,T. The next question, always
from the point of view of developing values of
resistance factors for use in design, is what a suitable
value of Pf,T should be.

1.2 Target Probability of Failure for Slopes

The probability of failure (Pf) of a given system,
which is in reality the probability that the system either
attains or goes beyond a limit state defined according to
some criterion (a ‘‘failure’’ criterion, which can be
represented in variable space as a line for two variables,
a surface for three variables, or a hyper-surface for four
or more variables). Adjustments to properties of the

system can make the system just so that it meets a set
target probability of failure (Pf,T).

In geotechnical engineering, Pf,T varies according to
how important the structure is and how serious the
consequences of attaining the limit state would be. In
this context, the concept of risk may be understood in
terms not only of the likelihood that certain events will
occur but also of what these events consist of and what
they would lead to in terms of casualties, environmental
damage, financial losses, and other undesirable out-
comes. Chowdhury and Flentje (7) suggested maximum
values for Pf of natural slopes in a range of 0.001 to
0.15, depending on potential failure modes and the
consequences of slope failure. This approach is
generally similar to traditional working stress design
practice, according to which different factors of safety
are used depending on the importance of the structure
or the quantity and quality of the data used in the
design. Christian et al. (8) suggested that a typical Pf,T

for slope design purposes is 0.001 but that, for design of
slopes of less importance, a greater Pf,T (0.01) may be
used. Loehr et al. (9) set the range of Pf,T from 0.001 to
0.01 for slopes: 0.01 for relatively low potential risk and
0.001 for high potential risk. An effort was made to
determine an acceptable Pf for slopes by Santamarina
et al. (10) by surveying engineers involved in slope
stability analysis. The results are summarized in
Table 1.1.

It is still not easy for engineers to reason in terms of
probability of failure and, indeed, to agree on what
‘‘failure’’ is. Interview with INDOT engineers revealed
that there have been three ‘‘deep-seated failures,’’ taken
to mean failures that are more serious than surface
raveling or other rather shallow slope failures that are
easily repaired, out of a few thousand slopes con-
structed in the past ten years or so. This would suggest
that INDOT has been working with a failure prob-
ability of 0.001 or less, and that this appears to be
acceptable.

Three different Pf,T values (0.0001, 0.001 and 0.01)
cover the range of interest in slope stability analysis in
practice.

1.3 Ultimate Limit State Equation

The ULS for slopes in this study is defined based on
Bishop’s simplified method (BSM) (11). Limit equili-
brium methods differ in their assumption about inter-
slice forces and the shape of the slip surface. BSM
assumes that the vertical resultant of the inter-slice
forces on the two sides of each slice is equal to zero and
only considers the horizontal components in the
calculation of Mr, Md,DL, and Md,LL. Despite the
different assumptions regarding inter-slice forces, the
calculated FS using BSM is comparable to those using
more rigorous methods, such as Spencer’s method (12),
for circular slip surfaces. Because BSM analyses are
faster than Spencer analyses, given the large number of
analyses required, we have used BSM in this study.

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/23



The FS for BSM is (11,13):

FSBSM~
Xn

i~1

cibiz WizQi{Uið Þtan i

cos ai 1z
tan ai tan i

FSBSM

� �

Xn

i~1

WizQið Þsinai

" #{1

(i~1,2, � � � ,n)

ð1:5Þ

where n is the total number of slices, c is the cohesive
intercept of the strength envelope assumed for the soil
(equal to the undrained shear strength su when w 5 0)
on the base of each slice, w is the friction angle along the
base of the slice, b is the width of the slice, W is the
weight of the slice, Q is the external load acting on top
of the slice, U is the vertical water force acting on the
base of the slice (equal to pore pressure times the
horizontal projected area of the base of the slice), and a
is the angle with the horizontal of the base of the slice.

For the development of LRFD for slopes, the ULS
equation follows from setting FS 5 1 in Equation
(1.5):

Xn

i~1

cibiz WizQi{Uið Þtan i

cos ai 1z tan ai tan i

� � {

Xn

i~1

WizQið Þsinai~0

ð1:6Þ

1.4 Algorithm for Resistance Factor Calculation using
Reliability Analysis

Despite the complexity of probabilistic slope stability
analysis (which involves the generation of random
fields; the location of the most critical slip surface and
determination of the corresponding FS), the process of
determination of the most probable ULS values of Mr,
Md,DL and Md,LL can be divided into two major stages:
(1) generation of a large number of Mr, Md,DL and
Md,LL triples using Monte Carlo Simulation (MCS)
such that the ratio of the number of triples that would
lead to failure to the total number of triples is equal to
the target probability of failure and (2) determination
of the most probable ULS (design point) from the large
number of instances of the triple (Mr, Md,DL and Md,LL)

generated during the MCS using Advanced First-Order
Reliability Analysis (AFORM) (14–16).

The following variables are treated as random
variables: (1) soil unit weight c, (2) apparent cohesion
c (or undrained shear strength su), (3) friction angle w,
and (4) external live load q on the crest of slope. Slope
geometry is taken as given. Pore pressure or ground-
water pattern variability is not considered, which is
consistent with the treatment of groundwater in design,
which is deterministic and often conservative.

The algorithm consists of following steps:

N Step 1: Define the slope configuration to be analyzed.
The slope geometry and location and thickness of layers
are set. Initial values for the nominal values of c (su), w, c
and q for each soil layer are also set.

N Step 2: Calculate the means of ci (sui), wi, ci and q by
multiplying the nominal values from Step 1 by their
corresponding bias factors.

N Step 3: If q exists (i.e., q ? 0), generate a random value
for q using the calculated mean and coefficient of
variation (COV).

N Step 4: Generate Gaussian random fields (GRF) for ci

(sui), wi and ci for each layer using the means of ci (sui), wi

and ci determined in Step 2 and the COVs of these
parameters. In a Gaussian random field, the values of
the corresponding quantity [ci (sui), wi or ci] are different
from point to point; but the expected value and the
standard deviation of the quantity are the same at every
point. A random realization of the slope follows from
superposition of the random fields for the problem
variables.

N Step 5: Perform a Simplified Bishop slope stability
analysis and find the critical slip surface CSS (corre-
sponding to the lowest FS) and the corresponding values
of Mr, Md,DL, and Md,LL for the specific random slope
constructed in Step 4.

N Step 6: Store the calculated values of the resisting
moment Mr and the driving moments (Md,DL and
Md,LL) for the CSS determined in Step 5 for later use.

N Step 7: Repeat Steps 3 through 6 to find the critical slip
surface CSS and its corresponding factor of safety FS for
each of N random realizations of the slope. N iterations of
Steps 3 through 6 produce N values of FS. Count the
cases for which FS # 1 (corresponding to ‘‘failure’’ or
attainment of the ultimate limit state of the slope). Suppose
there are n cases of failure; the Pf of the slope is then n/N.

N Step 8: Reconfigure the slope so as to achieve the target
probability of failure. It is important to stress that the

TABLE 1.1
Acceptable probability of failure of slopes (after (10))

Conditions Acceptable Pf

Temporary structures: no potential life loss, low repair cost 0.1

Minimal consequences of failure: high cost to reduce the probability of failure (bench slope or open pit mine) 0.1–0.2

Minimal consequences of failure: repairs can be done when time permits (repair cost is less than cost of reducing

probability of failure)

0.01

Existing large cut on interstate highway 0.01–0.02

Large cut on interstate highway to be constructed ,0.01

Lives may be lost when slopes fail 0.001

Acceptable for all slopes 0.0001

Unnecessarily low ,0.00001
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present algorithm is not a design algorithm; rather its
goal is to determine resistance factors for a slope with
certain characteristics (fixed geometry, layering pattern
and soil types). If the Pf calculated in Step 7 is not equal
to or is not very close to the Pf,T, which is the probability
of failure for which resistance and load factors are
desired, go back to Step 1. If the probability of failure
was too high, increase the initial nominal values of the
soil strength parameters. Otherwise, decrease those
values. Repeat Steps 1 through 7 until the calculated
probability of failure Pf is acceptably close to the target
probability of failure Pf,T. The number N of slope
realizations is considered sufficient when the calculated
Pf converges to within ¡ 5% of the target probability of
failure Pf,T when it is equal to 0.01 or 0.001 and within ¡

10% of the target probability of failure Pf,T when it is
equal to 0.0001.

N Step 9: Determine the mean, COV and type of
probability distribution for each of the moments Mr,
Md,DL, and Md,LL (the probability distribution type
of each moment is determined by performing the
Kolmogorov-Smirnov goodness-of-fit test), as well as
the correlation coefficients between the three variables
using all the resisting and driving moments generated
from the MCSs.

N Step 10: Using the AFORM method, determine the most
probable ultimate limit state (corresponding to the
failure or design point discussed earlier).

N Step 11: Perform a conventional deterministic slope
stability analysis using the nominal values of the soil
parameters and external loads for which the calculated Pf

is equal to the Pf,T. From this analysis, find the CSS and
the corresponding nominal values of the Mr, Md,DL, and
Md,LL. These are the values that an engineer performing
a deterministic stability analysis of the slope would
obtain.

N Step 12: Calculate the resistance and load factors using
(1.4) and the most probable ULS (Design Point)
moments obtained in Step 10 and nominal moments
obtained in Step 11.

1.5 Calculation Example

In order to illustrate the 12-step algorithm for load
and resistance factor determination, an example with
COVs of c, w, and c equal to 0.4, 0.1, 0.1 and scale of
fluctuation (sf) values (which is the parameter that
controls the degree of reduction in the correlation

coefficient between any two points when the distance
between these two points increases) of 20 m with a
target probability of failure Pf,T of 0.01 and live
uniform surcharge load (q 5 12 kN/m/m and COVq

5 0.205) applied on the crest of a clay slope is now
considered. Only undrained failure is assumed to be of
concern. The slope has the geometry of Figure 1.2.

N Step 1: To find the combination of the nominal values of
the soil parameters (su and c) of each layer that produce
the Pf,T (0.01), the initial guess for the soil parameters
was as follows: (1) layer 1: su1 5 20.0 kPa and c1 517.0
kN/m3; (2) layer 2: su2 5 30.0 kPa and c2 518.0 kN/m3;
and (3) layer 3: su3 5 40.0 kPa and c3 518.5 kN/m3. This
constitutes Step 1 of the algorithm. Note that these initial
guesses of the nominal values of soil parameters together
with the slope geometry and layering could conceivably
correspond to a real slope case. In that case, the
probability of failure of that slope will almost certainly
not be equal to the target probability of failure (0.01). So
the nominal (and mean) values of the soil parameters will
need to be adjusted in order to produce the desired
probability of failure, as detailed subsequently.

N Step 2: Multiply the nominal values of su and c of each
layer and q (512 kN/m/m) by the corresponding bias
factors (1.0 for su and c; 1.2 for q) to produce the mean
value of each parameter.

N Step 3: Generate a random value of q.

N Step 4: Generate Gaussian random fields for each soil
parameter, thereby defining a random realization of the
slope.

N Step 5: Perform a slope stability analysis using the
Bishop simplified method on the random realization of
the slope generated in Step 4.

N Step 6: Store the driving and resisting moments
corresponding to the most critical slip surface obtained
in Step 5.

N Step 7: Repeat Steps 3 through 6 for N (5 70,000) times.
The number of failure (FS ,1) cases was 456, so Pf 5

456/70000 5 0.0065 for the given combination of soil
parameter values.

N Step 8: As the initial assumed nominal values of soil
parameters produce Pf 5 0.0065, which is lower than Pf,T

5 0.01, the nominal values of the soil parameters are
iteratively adjusted until the combination of the adjusted
parameters produce Pf < 0.01. In principle, the nominal
values of the soil parameters could be varied in any
manner to produce the Pf,T. However, it is preferable to
retain the relative proportions of these values, so we

Figure 1.2 Geometry of a three-layer soil slope.
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reduce the nominal values of initial su1, su2 and su3

proportionally until the calculated Pf becomes approxi-

mately equal to 0.01. The values of soil parameters

producing Pf,T < 0.01 are as follows: (1) layer 1: su1 5

19.4 kPa and c1 517 kN/m3; (2) layer 2: su2 5 29.1 kPa

and c2 518.0 kN/m3; and (3) layer 3: su3 5 38.8 kPa and

c3 518.5 kN/m3
.

N Step 9: Due to the presence of external loads in this

calculation example, there exist driving moments induced

both by the self-weight of the soil (Md,DL) and by the

surcharge load on the crest of the slope (Md,LL). The

ULS surface is the locus of points corresponding to FS 5

1 in the Mr-Md,DL-Md,LL three-dimensional space.

Figure 1.3 shows the (Mr, Md,DL, and Md,LL) triples

normalized with respect to the corresponding radius rslip

of the circular slip surface, so with axes Mr/rslip, Md,DL/

rslip and Md,LL/rslip.

The red points are failure points (i.e., points correspond-

ing to FS # 1.0), and the plane is the ULS surface. For

each of the three normalized moments (Mr/rslip, Md,DL/

rslip, and Md,LL/rslip), the mean, COV and distribution

type, as well as the degree of correlation between the

three, is then determined for use in Step 10. It is

interesting to note, although not needed for the present

calculations, that the distribution of the FS, shown in

Figure 1.4, is approximately normal.

N Step 10: Using AFORM (essentially the application of

the Rosenblatt transformation and Hohenbichler and

Rackwitz procedure), determine the values of Mr/rslip,

Md,DL/rslip, and Md,LL/rslip at the most probable ULS

(i.e., at the design or failure point). These values are

753.130, 582.619, and 170.511 kNm/m/m, respectively.

N Step 11: Perform a conventional (deterministic) Bishop

slope stability analysis using the nominal values of the

soil parameters and given slope geometry to determine

the nominal values of Mr, Md,DL, and Md,LL, which will
be the values of these moments for the critical slip surface
resulting from this analysis. The slope stability analysis
produces an FS equal to 1.838 nominal values of Mr,
Md,DL, and Md,LL divided by the rslip equal to 1300.662,
621.176, and 85.682 kNm/m/m, respectively.

N Step 12: The load and resistance factors follow from
Equation (1.4): RF 5 0.579, (LF)DL 5 0.938 and (LF)LL

5 1.990.

1.6 Case Studies

Generating sufficient sets of optimal load and
resistance factors for different slope conditions is
important for the determination of the load factors
(LF)DL and (LF)LL and RF that are of general
applicability. This is an expensive exercise, given the
time required to perform the analyses, particularly for
very low probabilities of failure. In this section, we use
the 12-step procedure of the proposed algorithm to
calculate load and resistance factors corresponding to
three values of target probability of failure Pf,T: 0.0001,
0.001 and 0.01. Slopes with the same geometry as
shown in Figure 1.5 are initially considered.

Assumed COV values for c (su), w and c are (0.4, 0.1,
and 0.1) and (0.2, 0.05, and 0.05). The COV combina-
tion (0.4, 0.1, and 0.1) is expected to lead to slightly
conservative factors. The isotropic scales of fluctuation
of all soil parameters (c, w, and c) are taken as 20 m and
10 m, respectively, as discussed previously. Therefore,
there are four COV-sf combination cases. In case A, the
COVs and sf values of c, w and c are 0.4, 0.1, 0.1 and 20
m. The corresponding numbers for the other three cases
are: 0.4, 0.1, 0.1 and 10 m (case B), 0.2, 0.05, 0.05 and
20 m (case C), and 0.2, 0.05, 0.05 and 10 m (case D).

Figure 1.3 Scatter of driving moments Md,DL/rslip and Md,LL/
rslip and resisting moment Mr/rslip and the ULS surface (the
grey plane is the ULS surface and the points below the ULS
surface correspond to points with loading exceeding resistance).

Figure 1.4 Distribution of FS value for the calculation
example.
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Cases B, C and D are discussed later. Readers will
recognize the calculation example discussed previously
as case A with Pf,T 5 0.01 and a nonzero surcharge.
Since calculations are done for three values of target
probability of failure and the surcharge takes a value of
either zero or 12 kN/m2, there are a total of six
calculation cases corresponding to case A.

Six additional calculation cases are constructed from
the same geometry by now expressing strength in terms
of an undrained shear strength. The results of these
twelve calculation cases (with COV and sf values for c
(su), w and c of 0.4, 0.1, 0.1 and 20m, respectively, Pf,T

equal to 0.01, 0.001 or 0.0001, and q equal to 0 or 12
kN/m2) are summarized in Table 1.2. The table shows
the final nominal values of c (su), w, and c producing the
Pf,T and the corresponding load and resistance factors.
Table 1.2 shows the resistance factors that should be
used if a different pair of load factors, identified in the
table as ‘‘proposed’’ load factors, is used in design.

It is clear from Table 1.2 that the resistance and load
factor values obtained in calculation cases 1, 3 and 5 are

quite different from those calculated in cases 2, 4 and 6,
respectively, which differ from 1, 3 and 5 only in that a
surcharge is applied. This is not a surprise, as the
connection between load and resistance factors and the
presence of live loads has been shown to quite
significant in other studies (e.g., Basu and Salgado
(1)). For a given Pf,T, the factor values calculated for
undrained slopes (cases 1 to 6) are also fairly different
from those obtained from drained slopes (cases 7 to 12).

1.7 Application to Design Code Development

The RF and the LFs resulting from calculations
following Steps 1-12 are not independent. Load factors
are connected to a specific resistance factor, as shown
by the results of the calculation cases considered earlier
and summarized in Table 1.2. However, design codes
usually specify values of load factors to use in design. If
resistance and load factors are determined as done in
the present study, the load factor will not match the
code-specified load factor. In order to use the results of

Figure 1.5 Geometry of a three-layer soil slope and initial values of its soil properties.

TABLE 1.2
Nominal values of c (su), w, c and the corresponding resistance and load factors, equivalent factor of safety, and the adjusted resistance
factors for load factors LF*

DL 5 1.0 and LF*
LL 5 1.55 for three target probabilities of failure and the slope of Figure 1.5 subject to a

surcharge of zero or 12 kN/m/m.

Analysis Case Pf,T q

Layer 1 Layer 2 Layer 3

Factors from the

Analyses

RF* and FSeq for

LF*
DL 51.0 and

LF*
LL 51.55

c (su) w c c (su) w c c (su) w c LFDL LFLL RF FSeq RF*

Undrained 1 0.01 12 19.4 — 17 29.1 — 18 38.8 — 18.5 0.94 1.99 0.58 1.84 0.57

2 — 15.8 — 23.7 — 31.6 — 0.97 — 0.57 1.70 0.58

3 0.001 12 22.3 — 33.5 — 44.7 — 0.95 1.98 0.51 2.12 0.50

4 — 18.6 — 28.0 — 37.3 — 0.96 — 0.48 2.01 0.49

5 0.0001 12 24.5 — 36.8 — 49.1 — 0.94 1.97 0.46 2.33 0.45

6 — 21.1 — 31.6 — 42.1 — 0.96 — 0.42 2.27 0.44

Drained 7 0.01 12 10.3 10.3 18 5.1 20.5 19 7.2 20.5 19.5 0.73 0.97 0.60 1.27 0.83

8 — 9.2 9.2 4.6 18.4 6.4 18.4 0.95 — 0.80 1.19 0.83

9 0.001 12 11.0 11.0 5.5 22.0 7.7 22.0 0.79 0.92 0.60 1.30 0.78

10 — 9.9 9.9 4.9 19.7 6.9 19.7 0.81 — 0.64 1.28 0.78

11 0.0001 12 11.6 11.6 5.8 23.3 8.1 23.3 0.61 0.75 0.43 1.45 0.73

12 — 10.5 10.5 5.3 21.0 7.4 21.0 0.69 — 0.50 1.38 0.72

Units: q (kN/m), c or su (kPa), w (degrees), and c (kN/m3).
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the analysis described here with code-prescribed load
factors, the resistance factor must be adjusted. We can
make use of inequality (1.2) to make this adjustment.

Inequality (1.2), at the limit of equality, is expressed as

(RF�) Mrjn~(LF �DL)Md ,DL

��
n
z(LF �LL)Md ,LL

��
n
ð1:7Þ

for load and resistance factors as prescribed in a code
(indicated throughout this report by the superscripted
asterisk) and as

(RF ) Mrjn~ LFDLð ÞMd ,DL

��
n
z LFLLð ÞMd ,LL

��
n
ð1:8Þ

for load and resistance factors determined following
Steps 1 through 12 of the algorithm presented earlier.
Combining both equations, we can determine the value of
the adjusted resistance factor that matches any code-
prescribed load factors:

RF �~RF
LF�DLð Þ Md,DLjn

� �
z LF �LLð Þ Md,LLjn

� �
LFDLð Þ Md,DLjn

� �
z LFLLð Þ Md,LLjn

� � ð1:9Þ
The current AASHTO LRFD bridge design specifi-

cations (17) use an RF that is equal to the inverse of the
traditional values of FS because it assumes all the LFs
for different types of loads associated with slope designs
to be equal to one. The Eurocode (EN-1997) does
prescribe a factor on variable action of 1.3, but use
of Eurocode prescriptions for slope stability is still
debated (e.g., Lansivara and Poutanen (18)). Therefore,
in connection with slope stability, which values of load
factors to prescribe is still somewhat of an open
question. A possible way to determine appropriate
LFs for undrained analysis of slopes made of Tresca
soils (frictionless soils with strength equal to su) and
drained analysis of slopes made of soils modeled as
Mohr-Coulomb (c-w) materials is to require that all the
LFs for DLs and LLs be greater than or equal to one
(LF $ 1) and then look for the combination of LFs that
results in the narrowest range of RF values for each of
the three different Pf,T values (0.0001, 0.001 and 0.01).
The dead load and live load factors obtained in this
manner for the 12 cases corresponding to set A and
summarized in Table 1.2 are 1.0 and 1.5 for undrained
analyses and 1.0 and 1.55 for drained analysis of slopes.
For simplicity, a LF*

LL 5 1.55 is assumed for both
undrained and drained slope stability analyses.

Using these LF* values, the corresponding RF*

values are summarized in Table 1.2. For each case,
the corresponding FS values obtained from determi-
nistic analyses are also provided in Table 1.2. The
results in Table 1.2 show that, when appropriate LF*

values are selected, the RF* for each Pf,T varies within a
relatively narrow range. For example, RF* for Pf,T 5

0.01 is 0.57 2 0.58 for undrained and 0.83 for drained
analysis of slopes.

1.8 Degree of Conservatism of Results

For sufficiently low probability of failure, factors of
safety resulting from calculations for variability set A

are slightly lower than the commonly used FS 5 1.5 for
drained analysis but are more than slightly greater than
1.5 for undrained analysis of clay slopes. Although the
assumptions made in this study for random fields in
clay may be overly conservative, higher probabilities of
failure may be implicit in analyses done for clay slopes
with FS 5 1.5. Lansivara and Poutanen (18), for
example, suggest that there is an ‘‘overestimation of
safety’’ implied in typical factors of safety used in total
stress analysis of the stability of clay slopes. The results
of analyses of sets B, C and D, discussed earlier, allow
assessment of the degree of conservatism resulting from
the values of COV and scale of fluctuation assumed for
the set A conditions considered earlier and summarized
in Table 1.2.

Resistance and load factors for undrained and
drained slope stability analysis are determined for sets
B, C, and D of scale of fluctuation and COVs of soil
parameters following the same procedure as for set A.
The choice of load factors for DLs and LLs that
resulted in the narrowest range of RF* values for each
of the three different Pf,T values (0.0001, 0.001 and
0.01) for variability sets A though D, therefore
spanning a wide range of soil variability parameters,
were LF*

DL 5 1.0 and LF*
LL 5 1.19 for undrained

analyses and LF*
DL 5 1.0 and LF*

LL 5 1.20 for
drained analyses, respectively. Since simplicity is desired
in design prescriptions, LF*

DL 5 1.0 and LF*
LL 5 1.2,

which should work well for the range of variability
spanned by variability sets A-D, are proposed for slope
stability checks.

Resistance factors compatible with LF*
DL 5 1.0 and

LF*
LL 5 1.2 and equivalent safety factors for the less

conservative combinations of coefficients of variation
and scales of fluctuation associated with sets B, C and D
are given in Table 1.3. The RF* values and FSeq for set A
(most conservative) increased on average by 33% and
decreased on average by 28%, respectively, if the COVs
and sf values of c (su), w and c for set A are all reduced by
half, leading to values of the COVs and scale of
fluctuation corresponding to set D. The FSeq range
corresponding to Pf,T from 0.0001 to 0.01 for the 12
examples for the combinations of coefficients of
variation and scales of fluctuation of set D was 1.053-
1.442, which are all less than the commonly-used FS 5

1.5. The results from sets A and D are very likely to
bound the values of resistance and load factors for most
slope stability problems to be found in practice. More
research is needed on precise definition of values of both
the scale of fluctuation and the coefficient of variation
of each pertinent soil property so that final values of
resistance and load factors that may be used for a range
of slope stability problems can be determined.

A possible way in which a designer can use the results
summarized in Table 1.3 is for the designer to estimate
the variability of the soils in the slope and select the
appropriate resistance factor from one of sets A
through D. In so doing, it is desirable to keep in mind
that set A is probably conservative for total stress
analysis of clay slopes.
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1.9 Impact of Geometry

In order to assess the impact of geometry on the
resistance and load factors, additional resistance factor
calculations were performed by varying slope angle and

soil layering as a check on values reported so far. A
two-layer undrained soil slope with slope angles of 20u,
30u, and 40u (Figure 1.6) is assumed to examine the
effect of slope geometry on the resistance factors for set
D (COVc(su) 5 0.2; COVw 5 0.05; COVc 50.05; sf 5 10
m). The proposed load factors LF*

DL 5 1.0 and LF*
LL

5 1.2 were used in the resistance factor calculation.

For each of the two target probabilities of failure
considered (Pf,T 5 0.01 and 0.001), the difference in
resistance factor between different slope geometries was
insignificant for case D as shown in Table 1.4 where the
RF* values compatible with LF*

DL 5 1.0 and LF*
LL 5

1.2 increase only slightly with increasing slope angle.

It is apparent that, when realistic values of COV and
scale of fluctuation of the soil properties are assumed
(values close to those of set D), the resulting RF* values
do not depend strongly on slope geometry, suggesting
that rigorous reliability analysis algorithm proposed in
the present study can be used effectively to produce
load and resistance factors for use in design.

TABLE 1.3
Resistance factors and equivalent factor of safety values for different combinations (sets A to D) of COV values and scales of fluctuation
of c (su), w, and c corresponding to load factors LF*

DL 5 1.0 and LF*
LL 5 1.2

Calculation Case Pf,T q(kN/m)

RF* FSeq

set A set B set C set D set A set B set C set D

Undrained

analyses

1 0.01 12 0.55 0.60 0.73 0.76 1.840 1.684 1.397 1.339

2 — 0.58 0.63 0.81 0.83 1.702 1.580 1.232 1.203

3 0.001 12 0.48 0.54 0.68 0.73 2.119 1.893 1.489 1.399

4 — 0.49 0.56 0.76 0.79 2.009 1.776 1.314 1.264

5 0.0001 12 0.44 0.48 0.64 0.71 2.327 2.100 1.581 1.442

6 0.44 0.50 0.71 0.76 2.269 1.973 1.397 1.307

Drained

analyses

7 0.01 12 0.80 0.86 0.92 0.93 1.267 1.173 1.106 1.092

8 — 0.83 0.87 0.94 0.95 1.191 1.142 1.062 1.053

9 0.001 12 0.75 0.81 0.89 0.90 1.300 1.258 1.144 1.132

10 — 0.78 0.81 0.89 0.92 1.275 1.222 1.113 1.076

11 0.0001 12 0.70 0.78 0.86 0.87 1.447 1.302 1.181 1.170

12 — 0.72 0.78 0.86 0.90 1.377 1.279 1.150 1.100

Set A: COVc(su) 5 0.4; COVj 5 0.1; COVc 50.1; sf 5 20 m.

Set B: COVc(su) 5 0.4; COVj 5 0.1; COVc 50.1; sf 5 10 m.

Set C: COVc(su) 5 0.2; COVj 5 0.05; COVc 50.05; sf 5 20 m.

Set D: COVc(su) 5 0.2; COVj 5 0.05; COVc 50.05; sf 5 10 m.

Figure 1.6 Geometry of a two-layer soil slope with different
slope angles (used for undrained slope cases only).

TABLE 1.4
Comparison between resistance factors and equivalent factor of safety values for combination sets D (COVc(su) 5 0.2; COVc50.05; sf 5
10m) for the proposed LF*

DL 5 1.0 and LF*
LL 5 1.2 for different slope geometries and soil layer conditions (for undrained slope analyses)

Slope angle Pf,T

Nominal values (k Nm/m) LF and RF RF* and FSeq for LF*

Md,DL Md,LL Mr LFDL LFLL RF RF* FSeq

20u 0.01 248.7 66.3 463.4 0.814 1.973 0.719 0.70 1.47

0.001 249.0 66.5 492.6 0.652 1.656 0.553 0.66 1.56

30u 0.01 621.8 85.5 947.1 0.616 1.358 0.527 0.76 1.34

0.001 622.1 85.6 989.5 0.482 1.195 0.406 0.73 1.40

40u 0.01 213.8 41.9 337.5 1.867 3.258 1.587 0.78 1.32

0.001 215.5 42.5 359.1 1.803 3.196 1.460 0.74 1.39
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2. FURTHER VALIDATION IMPLEMENTATION
OF RESISTANCE AND LOAD FACTORS

2.1 Implementation

As shown in the previous chapter, the load factors
LF* of 1.0 for dead load and 1.2 for live load were
proposed for undrained stability analysis of slopes.
According to Table 1.3, resistance factor RF* under
undrained conditions for the proposed load factors is in
the range of 0.73 to 0.83, 0.68 to 0.79, and 0.64 to 0.76
for target failure probability Pf,T values of 0.01 (1%),
0.001 (0.1%), and 0.0001 (0.01%), respectively, with
slightly conservative estimates of spatial variability of
soil properties (sets C and D in Table 1.3). From the
range of calculated resistance factors, the RF*s of 0.75,
0.70, and 0.65 can be adopted for Pf,T of 0.01, 0.001,
and 0.0001, respectively. The resistance factors used in
this report are summarized in Table 2.1.

This report examines a total of six slopes (cases A
through F) provided by INDOT. The cross-section
views of the slope in each case are illustrated in
Figure 2.1 through Figure 2.6. The soil profile for each
case is summarized in Table 2.2. In cases A and B, the
weak clay layer below the slope was removed and a
sand layer assumed in its place to reinforce the slope. In
cases D and E, there is a relatively thick soft clay layer,
therefore the FSs in these cases are expected to be lower
than in other cases. For all cases, the short-term
(undrained) properties (c for clay and w for sand) of soil
are provided. To analyze short-term stability of these
slopes, the proposed undrained load and resistance
factors were used in the analyses.

Figure 2.7 illustrates the geometry parameters of the
target slopes in the analysis. The slope length Ls and
height Hs are defined in terms of the horizontal and
vertical distances from the toe to the crest of the slope.
The angle of the slope hs can be defined mathematically
as tan21(Hs/Ls). Lq is the width of the zone over which
live load q is applied. Lm is the horizontal distance from
the center of the live load to the center of the (circular)
critical slip surface. Using these definitions, these
parameters for the geometry of each of the six slopes
are listed in Table 2.3. The angle of the slope is between
14 and 20 degrees. Case A has the largest slope angle,
and Case B has the smallest slope angle.

Since the proposed load factors for dead and live
loads are different (1 and 1.2, respectively), the
contributions of dead and live loads to the total load
(driving moment) need to be considered separately.
This requires that the driving moments due to dead and

live loads be supplied by the slope stability software
separately. Alternatively, it is possible to separate the
components of the driving moment if the coordinates of
the center of the critical slip surface (assumed here as
circular) is known. Once the slip surface is defined,
using the center coordinates of a slip surface, the
driving moment (Md, LL) mobilized by the live load can
be calculated as:

Md,LL~qLqLm ð2:1Þ

The driving moment from the dead load (Md,DL) can
be calculated by subtracting the driving moment caused
by the live load (Md,LL) from the total driving moment
(Md).

The results of the original STABL analyses per-
formed by INDOT, as provided to us, did not have the
moments supplied separately or the slip surface center
coordinates; the cases were re-analyzed using both
STABL and Geostudio 2007H. As shown in Table 2.4,
there is no significant difference between FSs from
STABLH and Geostudio 2007H.

In the next step, the resistance factor and load factors
were applied to the resistance moment Mr, the driving
moment Md,DL due to dead loads and the driving
moment Md,LL due to live loads. The factored
resistance moment Mrf (5 RF?Mr) and the factored
driving moment Mdf (5 SLF?Md) were used to
determine whether the failure probability is less or
greater than the target failure probability.

2.2 Results

If the factored resistance moment Mrf is greater than
the factored driving moment Mdf, the probability of
failure Pf of the slope is greater than the target
probability of failure Pf,T assumed. Otherwise, the
failure probability of the slope is less than Pf,T. To
quantify this, the ratio Rf (5 Mrf /Mdf) is estimated for
each case; if Rf $ 1, Pf is less than Pf,T, whereas Pf is
greater than Pf,T if Rf , 1. It should be noted that Rf ,

1 does not mean a slope is unstable; it means that the
probability of failure of the slope is less than the target
failure probability Pf,T.

Table 2.5 lists the resisting moment Mr, the factored
resisting moment Mrf, the driving moment Md,DL

caused by the dead load, the driving moment Md,LL

from the live load, the factored driving moment Mdf,
the ratio Rf and FS for each case when the target
probability of failure Pf,T is 0.01 (1%). For all cases, the
ratio Rf is greater than one and the failure probability
Pf is less than the target probability of failure Pf,T ( 5

1%). Figure 2.8 shows the strong linear relationship
between the ratio Rf and FS. Once the regression line
between Rf and FS is found, FS corresponding to Rf

51.0, for which the failure probability is equal to the
prescribed target probability of failure, is set as the
minimum required factor of safety FSreq. If FS is less
than FSreq, the failure probability Pf is greater than the
target failure probability Pf,T; otherwise, Pf is less than
Pf,T. Figure 2.8 shows that FSreq for 1% failure

TABLE 2.1
Range and selected values of adjusted resistance factors RF* for
the proposed load factors (LF*DL 5 1.0 and LF*LL 5 1.2) with
respect to the failure probability Pf,T

Pf,T Range of RF* RF* used

0.01 (1%) 0.73 to 0.83 0.75

0.001 (0.1%) 0.68 to 0.79 0.70

0.0001 (0.01%) 0.64 to 0.76 0.65
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Figure 2.1 Cross-section view of the slope in case A.
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Figure 2.2 Cross-section view of the slope in case B.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/23 11



Figure 2.3 Cross-section view of the slope in case C.
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Figure 2.4 Cross-section view of the slope in case D.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/23 13



Figure 2.5 Cross-section view of the slope in case E.
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Figure 2.6 Cross-section view of the slope in case F.
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TABLE 2.2
Soil profile for each case

Case Layer No. c (pcf) c (psf) w (deg) Top elevation (ft) Thickness (ft) Description

A 1 125 1200 — 883.0 25.0 Fill

2 120 500 — 858.0 8.0 CL (A-6), WT at 851’

3 120 — 33 858.0 8.0 B Borrow (below the slope), WT at 851’

4 120 1200 — 850.0 — CL (A-4)

B 1 125 1200 — 848.8 16.5 Fill

2 120 500 — 832.3 6.0 CL (A-6)

3 120 — 33 832.3 6.0 B Borrow (below the slope)

4 120 1000 — 826.3 7.5 SL (A-4), WT at 821’

5 120 1200 — 818.8 — SL (A-4)

C 1 125 1200 — 871.1 20.5 Fill

2 120 250 — 850.6 4.2 L (A-6)

3 120 1000 — 846.6 — SL (A-4), WT at 841.1’

D 1 125 1200 — 852.6 20 Fill

2 120 500 — 832.6 15.8 C (A-6), WT at 824.2’

3 120 — 30 816.8 — L (A-4)

E 1 125 1200 — 871.2 17.4 Fill

2 120 250 — 853.8 8.2 C (A-6)

3 120 1200 — 845.6 — SL (A-4), WT at 840.5’

F 1 125 1200 — 849.0 17.0 Fill

2 120 500 — 832.0 6.0 CL (A-6)

3 120 1000 — 826.0 8.0 SL (A-4), WT at 821.0’

4 120 1200 — 818.0 — SL (A-4)

WT denotes water table.

Figure 2.7 Schematic diagram of target slopes.

TABLE 2.3
Geometry of the six slopes

Case Height Hs (ft) Length Ls (ft) Angle hs (deg)

A 25.0 70.0 19.7

B 16.5 65.0 14.2

C 21.1 64.3 18.2

D 20.0 65.1 17.1

E 25.6 74.5 19.0

F 17.0 63.5 15.0

TABLE 2.4
Factors of safety from STABLH and Geoslope 2007H for each
case

Case FS from STABLH FS from Geoslope 2007H

A 2.19 2.33

B 3.02 3.08

C 2.19 2.21

D 1.65 1.64

E 1.53 1.50

F 2.82 2.66

Figure 2.8 Ratio Rf versus FS for Pf,T 5 0.01 (1%).
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probability is about 1.35 which is within the 1.34-1.40
range of FSeq for undrained slopes subjected to a live
load when an appropriate degree of conservatism in the
spatial variability of soil properties is considered
according to Table 1.3.

Table 2.6 lists the resisting moment Mr, the factored
resisting moment Mrf, the driving moment Md,DL

caused by the dead load, the driving moment Md,LL

caused by the live load, the factored driving moment
Mdf, the ratio Rf, and FS for each case when the target
probability of failure Pf,T is 0.001 (0.1%). For all cases,

the ratio Rf is greater than one, which means that the
failure probability Pf is less than the target probability
of failure Pf,T (5 0.1%). In case E, which has the lowest
FS, the ratio Rf is close to one; the failure probability
of the slope in case E is almost identical to the target
failure probability, Pf,T 5 0.1%. Figure 2.9 plots the
ratio Rf versus FS; it shows that the minimum required
factor of safety FSreq for Pf,T 5 0.1% is about 1.45
which is within the 1.40-1.49 range of FSeq for
undrained slopes subjected to a live load when an
appropriate degree of conservatism in spatial varia-
bility of soil properties is considered according to
Table 1.3.

Table 2.7 lists the resisting moment Mr, the factored
resisting moment Mrf, the driving moment Md,DL

caused by the dead load, the driving moment Md,LL

from the live load, the factored driving moment Mdf,
the ratio Rf, and the factor of safety FS for each case
when the target probability of failure Pf,T is 0.0001
(0.01%). In case E, the ratio Rf is less than one, meaning
that the failure probability of the slope in case E is
greater than the target failure probability Pf,T 5 0.01%.
As mentioned before, Rf less than unity means that
more than one in ten thousand slopes falling within case
E would likely fail. Figure 2.10 plots the ratio Rf versus
FS; it shows the minimum required factor of safety
FSreq for Pf,T 5 0.1% is about 1.56 which is within the
1.44–1.58 range of FSeq for the undrained slopes
subjected to a live load when an appropriate degree
of conservatism in spatial variability of soil properties is
considered according to Table 1.3.

TABLE 2.5
Analysis results for Pf,T 5 0.01

Case Mr(105 lb?ft/ft)

Mrf (5 RF Mr)

(105 lb?ft/ft)

Md,DL

(105 lb?ft/ft)

Md,LL

(105 lb?ft/ft)

Mdf (5 SLF Md)

(105 lb?ft/ft) Rf (5 Mrf/Mdf) FS

A 464.1 348.1 185.9 13.3 201.8 1.725 2.33

B 133.2 99.9 34.4 8.9 45.0 2.218 3.08

C 95.2 71.4 37.6 5.6 44.2 1.614 2.21

D 52.4 39.3 26.6 5.4 33.0 1.190 1.64

E 29.2 21.9 15.1 4.4 20.4 1.073 1.50

F 104.2 78.1 30.2 6.7 38.2 2.043 2.66

Figure 2.9 Ratio Rf versus FS for Pf,T 5 0.001 (0.1%).

TABLE 2.6
Analysis results for Pf,T 5 0.001

Case Mr(105 lb?ft/ft)

Mrf (5 RF Mr)

(105 lb?ft/ft) Md,DL(105 lb?ft/ft) Md,LL(105 lb?ft/ft)

Mdf (5 SLF Md)

(105 lb?ft/ft)

Rf

(5 Mrf/Mdf) FS

A 464.1 324.9 185.9 13.3 201.8 1.610 2.33

B 133.2 93.2 34.4 8.9 45.0 2.070 3.08

C 95.2 66.6 37.6 5.6 44.2 1.507 2.21

D 52.4 36.7 26.6 5.4 33.0 1.111 1.64

E 29.2 20.4 15.1 4.4 20.4 1.002 1.50

F 104.2 72.9 30.2 6.7 38.2 1.907 2.66
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3. SUMMARY AND CONCLUSIONS

The main goal of this study was to provide more
specific guidance on values of resistance factors to
implement in load and resistance factor design of
slopes, with specific illustrations. Chapter 1 introduced
the concepts of load and resistance factors, the target
probability of failure for slopes, and the ultimate limit
state equation. It then presented a detailed algorithm
for resistance factor calculation by using reliability
analysis. Chapter 1 then presented calculation examples
showing how to implement LRFD in slope stability
analysis. Six slopes were constructed by using both
drained and undrained shear strengths. The nominal
values of controlling parameters (c (su), w and c), the
resistance and load factors, and the equivalent factor of
safety at three target probabilities of failure were
presented. In addition, the effect of slope geometry
was discussed in Chapter 1. It was shown that, when
realistic values of COV and scale of fluctuation of the
soil properties were assumed (values close to those of
set D), the resulting RF* values did not depend strongly
on slope geometry, suggesting that rigorous reliability
analysis algorithm proposed in the present study can be
used effectively to produce load and resistance factors
for use in design of slopes.

Chapter 2 applied the LRFD methodology summar-
ized in Chapter 1 to check the stability of a total of six
slope cases (case A through F) provided by INDOT.
The short-term (undrained) properties of soil were used
to analyze all cases. For all the adopted target
probabilities of failure, there was a strong linear
correlations between the ratio Rf of factored resistance
to factor load and FS. In all cases, the minimum
required factor of safety FSreq was within the range of
FSeq for the undrained slopes subjected to a live load
established by Salgado and Kim (19).

From the successful implementation in this study, the
recommended resistance factors RF* adjusted with
respect to the proposed load factors LF* (LF*DL 5 1.0
and LF*LL 5 1.2) are 0.75, 0.70, and 0.65 for Pf,T of
0.01 (1%), 0.001 (0.1%), and 0.0001 (0.01%), respec-
tively. Of these, the value of 0.70 would appear to better
match the current level of reliability with which INDOT
is comfortable.
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