4,817 research outputs found

    Giant Colloidal Diffusivity on Corrugated Optical Vortices

    Full text link
    A single colloidal sphere circulating around a periodically modulated optical vortex trap can enter a dynamical state in which it intermittently alternates between freely running around the ring-like optical vortex and becoming trapped in local potential energy minima. Velocity fluctuations in this randomly switching state still are characterized by a linear Einstein-like diffusion law, but with an effective diffusion coefficient that is enhanced by more than two orders of magnitude.Comment: 4 pages, 4 figure

    Joint probabilistic data association filter with unknown detection probability and clutter rate

    Get PDF
    This paper proposes a novel joint probabilistic data association (JPDA) filter for joint target tracking and track maintenance under unknown detection probability and clutter rate. The proposed algorithm consists of two main parts: (1) the standard JPDA filter with a Poisson point process birth model for multi-object state estimation; and (2) a multi-Bernoulli filter for detection probability and clutter rate estimation. The performance of the proposed JPDA filter is evaluated through empirical tests. The results of the empirical tests show that the proposed JPDA filter has comparable performance with ideal JPDA that is assumed to have perfect knowledge of detection probability and clutter rate. Therefore, the algorithm developed is practical and could be implemented in a wide range of application

    Computational guidance using sparse Gauss-Hermite quadrature differential dynamic programming

    Get PDF
    This paper proposes a new computational guidance algorithm using differential dynamic programming and sparse Gauss-Hermite quadrature rule. By the application of sparse Gauss-Hermite quadrature rule, numerical differentiation in the calculation of Hessian matrices and gradients in differential dynamic programming is avoided. Based on the new differential dynamic programming approach developed, a three-dimensional computational algorithm is proposed to control the impact angle and impact time for an air-to-surface interceptor. Extensive numerical simulations are performed to show the effectiveness of the proposed approach

    Track-oriented multiple hypothesis tracking based on Tabu search and Gibbs sampling

    Get PDF
    In order to circumvent the curse of dimensionality in multiple hypothesis tracking data association, this paper proposes two efficient implementation algorithms using Tabu search and Gibbs sampling. As the first step, we formulate the problem of generating the best global hypothesis in multiple hypothesis tracking as the problem of finding a maximum weighted independent set of a weighted undirected graph. Then, the metaheuristic Tabu search with two basic movements is designed to find the global optimal solution of the problem formulated. To improve the computational efficiency, this paper also develops a sampling based algorithm based on Gibbs sampling. The problem formulated for the Tabu search-based algorithm is reformulated as a maximum product problem to enable the implementation of Gibbs sampling. The detailed algorithm is then designed and the convergence is also theoretically analyzed. The performance of the two algorithms proposed are verified through numerical simulations and compared with that of a mainstream multiple dimensional assignment implementation algorithm. The simulation results confirm that the proposed algorithms significantly improve the computational efficiency while maintaining or even enhancing the tracking performance

    Distributed multiple model joint probabilistic data association with Gibbs sampling-aided implementation

    Get PDF
    This paper proposes a new distributed multiple model multiple manoeuvring target tracking algorithm. The proposed tracker is derived by combining joint probabilistic data association (JPDA) with consensus-based distributed filtering. Exact implementation of the JPDA involves enumerating all possible joint association events and thus often becomes computationally intractable in practice. We propose a computationally tractable approximation of calculating the marginal association probabilities for measurement-target mappings based on stochastic Gibbs sampling. In order to achieve scalability for a large number of sensors and high tolerance to sensor failure, a simple average consensus algorithm-based information JPDA filter is proposed for distributed tracking of multiple manoeuvring targets. In the proposed framework, the state of each target is updated using consensus-based information fusion while the manoeuvre mode probability of each target is corrected with measurement probability fusion. Simulations clearly demonstrate the effectiveness and characteristics of the proposed algorithm. The results reveal that the proposed formulation is scalable and much more efficient than classical JPDA without sacrificing tracking accurac

    Trajectory optimization for target localisation with bearing-only measurement

    Get PDF
    This paper considers the problem of twodimensional (2D) constrained trajectory optimisation of a pointmass aerial robot for constant-manoeuvring target localisation using bearing-only measurement. A performance metric that can be utilised in trajectory optimisation to maximise target observability is proposed first based on geometric conditions. One-step optimal manoeuvre that maximises the observability criterion is then derived analytically for moving targets. The heading angle constraint is also incorporated in the proposed optimal manoeuvre derivation to support practical application. Numerical simulations with some comparisons are presented to validate the analytical findings

    Distributed joint probabilistic data association filter with hybrid fusion strategy

    Get PDF
    This paper investigates the problem of distributed multitarget tracking (MTT) over a large-scale sensor network, consisting of low-cost sensors. Each local sensor runs a joint probabilistic data association filter to obtain local estimates and communicates with its neighbors for information fusion. The conventional fusion strategies, i.e., consensus on measurement (CM) and consensus on information (CI), are extended to MTT scenarios. This means that data association uncertainty and sensor fusion problems are solved simultaneously. Motivated by the complementary characteristics of these two different fusion approaches, a novel distributed MTT algorithm using a hybrid fusion strategy, e.g., a mix of CM and CI, is proposed. A distributed counting algorithm is incorporated into the tracker to provide the knowledge of the total number of sensor nodes. The new algorithm developed shows advantages in preserving boundedness of local estimates, guaranteeing global convergence to the optimal centralized version and being implemented without requiring no global information, compared with other fusion approaches. Simulations clearly demonstrate the characteristics and tracking performance of the proposed algorithm

    Sample greedy gossip distributed Kalman filter

    Get PDF
    This paper investigates the problem of distributed state estimation over a low-cost sensor network and proposes a new sample greedy gossip distributed Kalman filter. The proposed algorithm leverages the information weighted fusion concept and the sample greedy gossip averaging protocol. By introducing a stochastic sampling strategy in the greedy sensor node selection process, the proposed algorithm finds a suboptimal communication path for each local sensor node during the process of information exchange. Theoretical analysis on global convergence and uniform boundedness is also performed to investigate the characteristics of the proposed distributed Kalman filter. The main advantage of the proposed algorithm is that it provides well trade-off between communication burden and estimation performance. Extensive empirical numerical simulations are carried out to demonstrate the effectiveness of the proposed algorithm

    Multi-sensor multi-target tracking using domain knowledge and clustering

    Get PDF
    This paper proposes a novel joint multi-target tracking and track maintenance algorithm over a sensor network. Each sensor runs a local joint probabilistic data association (JPDA) filter using only its own measurements. Unlike the original JPDA approach, the proposed local filter utilises the detection amplitude as domain knowledge to improve the estimation accuracy. In the fusion stage, the DBSCAN clustering in conjunction with statistical test is proposed to group all local tracks into several clusters. Each generated cluster represents the local tracks that are from the same target source and the global estimation of each cluster is obtained by the generalized covariance intersection (GCI) algorithm. Extensive simulation results clearly confirms the effectiveness of the proposed multisensor multi-target tracking algorithm
    • …
    corecore