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Track-Oriented Multiple Hypothesis Tracking Based
on Tabu Search and Gibbs Sampling

Shaoming He, Hyo-Sang Shin, Antonios Tsourdos

Abstract

In order to circumvent the curse of dimensionality in multiple hypothesis tracking (MHT) data association, this paper proposes
two efficient implementation algorithms using Tabu search and Gibbs sampling. As the first step, we formulate the problem of
generating the best global hypothesis in MHT as the problem of finding a maximum weighted independent set of a weighted
undirected graph. Then, the metaheuristic Tabu search with two basic movements is designed to find the global optimal solution
of the problem formulated. To improve the computational efficiency, this paper also develops a sampling based algorithm based
on Gibbs sampling. The problem formulated for the Tabu search based algorithm is reformulated as a max product problem
to enable implementation of Gibbs sampling. The detailed algorithm is then designed and the convergence is also theoretically
analysed. The performance of the two algorithms proposed are verified through numerical simulations and compared with that of
a mainstream MDA implementation algorithm. The simulation results confirm that the proposed algorithms significantly improve
the computational efficiency while maintaining or even enhancing the tracking performance.
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I. INTRODUCTION

Multiple target tracking (MTT) is a vital problem that arises in many surveillance systems, employing sensors to collect
information of interest from the environment. Application examples of MTT include, but are not limited to, radar-based
tracking of moving targets [1], sonar-based tracking of submarines [2], video-based tracking of pedestrians [3]–[8], extended
target tracking [9] and biomedical cells [10]. The primary aim of MTT is to simultaneously estimate target trajectories and
maintain the confirmed tracks for multiple targets of interest. Therefore, the two essential problems of MTT are: (1) state
estimation/prediction; and (2) data association.

It is obvious that data association becomes more challenging in MTT than in single target tracking (STT). MTT usually
suffers from high possibility of having multiple false alarms and clutters, i.e., measurement origin uncertainties, besides target-
generated observations. Moreover, MTT encounters with target birth and death. All these facts make the data association
complicated and hence a key issue in MTT [11], [12].

To this end, this paper tackles with MTT, especially focusing on the data association problem. The most fundamental and
conventional data association for MTT is the nearest neighbour (NN) filter [13]. NN aims to find the observation nearest to each
target, among all observations in the target validation region. This approach is simple and requires low computation demands.
However, as this approach prunes all other feasible measurements from the association, its performance could significantly
suffer in dense clutter environments. The global NN (GNN) filter is an extension of the NN filter. In the GNN filter, all
possible associations within the gates are taken into account. To find the best association among all possible association, GNN
applies an optimisation algorithm such as Jonker-Volgenant-Castanon or auction algorithm [14]. Nonetheless, since GNN also
considers only the most likely measurement to each target, it has no measure to counteract the measurement uncertainty and
only works well for the environments with low false alarm and widely spaced targets.

Considering the issues with the NN and GNN filters, it is desirable to conduct data association in a probabilistic manner
[15]. The most well-known one-scan probabilistic data association for the MTT problem is joint probabilistic data association
(JPDA) filter [16], [17]. JPDA is known to be a sub-optimal approximation (in the sense of minimum mean square error)
for optimal Bayesian estimation. In JPDA, the target’s state is approximated by a single Gaussian model with the moment
matched to its corresponding multiple Gaussian mixtures. The key idea of JPDA is to enumerate all possible associations to
calculate the marginal association probability. The issue is that calculating the marginal association probability is known to
be #P-complete. To reduce the computational burden, some approximations of JPDA such as cheap JPDA [18], suboptimal
JPDA [19] and near-optimal JPDA [20] were developed in the past few years.

Recent dramatic advance in computational capabilities has led to another widely-used data association approach, namely
multiple hypothesis tracking (MHT). Unlike JPDA, MHT utilised several consecutive scans to solve the data association
problem in a delayed logic and is known as a maximum a posteriori (MAP) estimator. Generally, MHT can be categorised
into two main types: (1) hypothesis-oriented; and (2) track-oriented. The hypothesis-oriented MHT, originally proposed by
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Reid [21], forms and expands a large number of hypotheses scan to scan for data association. On the other hand, the track-
oriented MHT [22] maintains track trees for incompatible tracks and discards all the unreliable tree branches (track hypotheses)
formed on last scans based on the best global hypothesis. In both categories, how to generate global hypotheses is a key part
for the implementation. The naive brute force enumeration of all hypotheses is impractical for the real-time application as
the number of hypotheses exponentially increases. In case of the hypothesis-oriented MHT, Cox [23] proposed an efficient
method by considering only m−best hypotheses using Murty’s ranking algorithm [24]. As to track-oriented MHT, multiple
dimensional assignment (MDA) [25]–[27] is the mainstream for the implementation. The MDA problem with scan depth of
more than two is known to be NP-hard. Solutions of this problem are generally obtained by an approximate algorithm such
as Langrangian relaxation approach [14], [25], m−best assignment [14], and linear programming [28]. Note that the linear
programming solution requires problem relaxation by allowing non-integer value for the association event and therefore the
integral property of the solution is not ensured. This brings up the question of how to deal with the fractional assignments.
In [28], the Langrangian relaxation solution was shown to be better than the m−best assignment and linear programming
implementations. Recently, the MDA formulation of MHT was proven to be equivalent to the one finding the maximum weight
independent set (MWIS) of a weighted undirected graph [29]. The MWIS formulation of MHT is easier not only to understand,
but also to implement. However, the MWIS problem is still an NP-hard problem. To make it computationally tractable, one
needs to seek to heuristic approaches or countable approximations. In [6], the authors utilised the MWIS formulation of MHT
in the task of multi pedestrian tracking, where the MWIS problem was solved by a line search method. However, the quality
of line search is highly dependent on the initial guess and hence easy to be trapped in a local optimum. Another MWIS
implementation algorithm of MHT can be found in [30], where the exact solution [31] was sought at the price of increased
computational demands. In order to relax the computational burden while providing reasonable results, some other approaches
such as the evolutionary algorithm [32] or heuristic approach [33] are also implemented to the MWIS problem.

Thanks to its MAP property, this paper adapts MHT as the baseline data association approach. Especially, the track-oriented
MHT is considered since it is proven to be more efficient than its hypothesis-oriented counterpart for practical implementation
[34], [35]. The main focus of this paper is to address the issue with computational efficiency in the track-oriented MHT,
without sacrificing the tracking performance.

The contribution of this paper is the development of two different implementation algorithms for the track-oriented MHT
to mitigate the computational efficiency issue. The first approach takes advantages of the MWIS formulation and develops
a metaheuristic Tabu search algorithm to find the best global hypothesis for the MWIS problem formulated. Hence, the first
algorithm is named as Tabu-MHT algorithm in this paper. The Tabu search based MHT implementation algorithm is also a
new approach for the MWIS problem. The Tabu search is chosen because the MWIS problem is a combinatorial optimization
problem and the heuristic approach is considered to be well-suited to this type of problem [36]–[38]. At each Tabu iteration,
two basic movement, namely add and swap, are used to find a better neighbourhood solutions of the initial candidates. A trigger
policy is also proposed in the Tabu search to enhance the capability of escaping from the local optimum, i.e. the capability of
finding the global optimum.

The second approach proposed exploits countable approximation based on a stochastic sampling method. In this approach,
we reformulate the max summation MWIS problem to a new max product decoding (MPD) problem. The key idea of the newly
proposed formulation is to consider each solution, that is association, as a random variable with a distribution. The product
in the MPD problem is represented by this distribution and corresponds to the weight/track score in the MHT problem. This
paper suggests to adopt the stochastic Gibbs sampling to approximate the distribution, so called Gibbs-MHT algorithm. It is
then proven that the Markov chain generated by the proposed Gibbs sampling asymptotically converges to the target invariant
distribution.

For the verification, the performance of the two proposed approaches is investigated via numerical simulations and compared
with the mainstream Langrangian relaxation-based MDA algorithm. The two main performance indices considered are the
tracking performance and running time. The simulation results with different scenarios show that the two proposed approaches
outperform the mainstream MDA-MHT algorithm, especially for large scale problems. This confirms that the two approaches
developed improve the computational efficiency of the MHT without sacrificing the tracking performance.

The rest of the paper is organised as follows. Sec. II presents some preliminaries of MHT, especially the track-oriented
one. Sec. III provides different formulations of MHT. In Sec. IV, the proposed Tabu search-based implementation algorithm is
detailed, followed by Gibbs sampling-aided implementation algorithm represented in Sec. V. Finally, some simulation results
and conclusions are offered.

II. PRELIMINARIES

This section presents some concepts and implementation issues regarding track-oriented MHT.

A. Basic Concepts

The set of measurements received at scan k is defined as

Zk =
{
zk0 , z

k
1 , z

k
2 , ..., z

k
Mk

}
(1)
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where Mk is the number of measurements received at scan k, zki (i ̸= 0) the ith measurement received at scan k, zk0 the dummy
measurement for the convenient representation of miss detection and false alarm.

A track or track hypothesis is defined as a sequence of measurements given by

T k
i =

{
z1i1 , z

2
i2 , , ..., z

k
ik

}
(2)

where zjij with ij ∈ {0, 1, . . . ,Mj} represents the ij th measurement that is hypothesised to be allocated to the ith track at
scan j ∈ {1, . . . , k}.

The track-oriented MHT aims to find the most probable global hypothesis and use the matched state estimation from this
particular hypothesis for the track maintenance. A global hypothesis is a set of tracks that are compatible, that is not in conflict:
any two tracks in a global hypothesis do not share any common non-dummy observations at any scan and the two tracks cannot
originate from one common node.

To find the best global hypothesis, MHT keeps a track tree in several consecutive scans for the track maintenance. A track
tree in MHT encapsulates multiple tracks, also called track hypotheses, as each track carried from previous scan induces
potentially many new tracks. Moreover, at each new scan, a new track tree is constructed for each measurement to consider
the possibility the new measurement being a new target.

Each track hypothesis in MHT is associated with a track score, which is typically defined as a log likelihood ratio (LLR)
L
(
T k
i

)
between the true target hypothesis probability and false alarm hypothesis probability. The true target hypothesis assumes

that the sequence of measurement comes from the same target whereas the false alarm hypothesis assumes the sequence of
observations originates from clutter. As there is no prior knowledge regarding the clutter measurements, we make the general
assumptions in the MTT problem that the number of clutters or false alarms is locally Poisson distributed [39]. Let λF denote
the expected number of clutters per unit volume of the validation gate, known as spatial density of clutters. The number of
new targets appearing in the space is also assumed to be Poisson distributed. The expected number of new targets per unit
volume, known as spatial density of new targets, is denoted as λN .

Following [14], the LLR score of track T k
i can be computed recursively as

L
(
T k
i

)
= L

(
T k−1
i

)
+∆L

(
T k
i

)
(3)

where the incremental term ∆L
(
T k
i

)
is defined as

∆L
(
T k
i

)
=


ln (1− PDPG) , ik = 0

ln

[
p
(
zkik
∣∣T k

i

)
PD

λF

]
, ik ̸= 0

(4)

where PD denotes the probability of detection, PG the gating probability, p
(
zkik
∣∣T k

i

)
the track conditioned measurement

likelihood. When a new track hypothesis is created, the track score of the new hypothesis is initialised as

L
(
T 1
i

)
= ln

(
λN

λF

)
(5)

The status of a track is usually characterised by the classical sequential probability ratio test (SPRT) based on its current
score versus the upper and lower thresholds (Tlow, Tup). Generally, a track is confirmed once its score exceeds the upper
threshold Tup while a track is immediately deleted if its score is below the lower threshold Tlow. If the track score falls
between the upper and lower thresholds, the corresponding track is still tentative and is required to be further tested.

Following the standard SPRT, the upper and lower thresholds are defined as

Tlow = ln

(
β

1− α

)
, Tup = ln

(
1− β

α

)
(6)

where α is the false track confirmation probability, and β the true track deletion probability. As stated in [14], the allowable
false track confirmation probability α can be defined from the system requirements on false track initiation. For example, if
the system generates NFA false alarms per scan and only NFC false track confirmations are allowed within NS scans, then,
one can set α = NFA/ (NSNFC). Note that the choice of β is less important since the true track deletion probability β has
less effect on the track confirmation threshold. Typical choice of β is β ≤ 0.1.

B. Implementation Issues

The key feature of MHT is the delayed-decision for data association, i.e. the track-oriented MHT postpones the confirmation
of data association until decision ambiguity is cleared. It is known that maintaining as many track hypotheses as possible
is advantageous to facilitate an irrevocable hard decision, delaying the association decision until enough data information is
available.

The issue with keeping as many hypotheses as possible is that the number of track hypotheses, even for each track tree,
exponentially increases. As the number of tracks of the track trees increases in an exponential way, it becomes intractable to
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keep all tracks of each tree. To handle the issue with the combinatorial explosion of track hypotheses, it is essential to develop
a computationally efficient algorithm in the MHT implementation.

In practice, gating is used to reduce the computational burden of the MHT data association [14]. When a new scan of data
is received, the widely accepted ellipsoidal gating procedure is usually performed to remove the most unlikely measurements
of each track. Only those measurements that are within the validation region are considered for the update of tracks. A typical
ellipsoidal gate is given by [14] (

zki − ẑ
k|k−1
j

)T
S−1
k

(
zki − ẑ

k|k−1
j

)
≤ γ (7)

where ẑ
k|k−1
j denotes the predicted measurement of the jth track and S is the covariance of the innovation term zki − ẑ

k|k−1
j .

γ is the maximum Mahalanobis distance that controls the volume of the gate.
Clustering is another popular way to break the large association problem into small sub-problems. The clustering process

partitions the full set of track hypotheses into a number of disjoint groups and thus the measurement-to-target association
can be done in a parallel way to improve the computational efficiency. Each cluster is a collection of incompatible trees. An
efficient clustering procedure can be found in [22].

Note that it is widely accepted that gating and clustering can relax the computational burden only up to a certain degree
[14]. Therefore, it is still required to develop an implementation algorithm to further reduce the computational load.

III. PROBLEM FORMULATION

As discussed in the previous section, the aim of the track-oriented MHT is to find the best global hypothesis. The problem
of finding the best global hypothesis can be formulated as an optimisation problem. The mainstream solution of this problem is
called MDA formulation. Another commonly used formulation is called MWIS formulation. Since it is known that the MWIS
formulation is more intuitive and easy to implement, this paper adapts the MWIS formulation as the baseline formulation
for the proposed track-oriented MHT algorithms. This subsection first introduces the mainstream MDA formulation and then
shows how to convert the MDA problem into an equivalent MWIS problem.

A. MDA Formulation

Let si = L
(
T k
i

)
, N denote the number of tracks at current scan k, and M denote the summation of the number of resolved

tracks at the root node (i.e., the confirmed tracks at the root scan) and the number of non-dummy measurements during the
last p− 1 scans, where p is the scan depth. Then, the best global hypothesis can be generated by solving a binary optimisation
problem, called MDA, as

argmax
a

s · a

s.t. Aa = b, bj = 1, j = 1, 2, ...,M

ai ∈ {0, 1} , i = 1, 2, ..., N

(8)

where s = [s1, s2, . . . , sN ] is a vector of track scores. Here, ai ∈ {0, 1} is a binary variable indicating inclusion of the ith
track in the solution, 1 for being included and 0 for being excluded. Matrix A is a M ×N binary matrix that is used to satisfy
the condition: (1) any two tracks in a global hypothesis are compatible; and (2) one measurement can only be assigned to one
track. The optimisation problem formulated in (7) is known to be NP-hard when the scan depth is greater than 2 [25]–[27].
Approximate solutions of (8) can be obtained by Langrangian relaxation, m−best assignment or linear programming [28].

1

1

3

10

00 0 3

Track 1 Track 2 Track 6 Track 7Track 3

Scan k

Scan k-1

Scan k-2 2

2 0

0 0

Track 4 Track 5

2

0

Track 8

3

Track 9

Fig. 1: An example of track tree for MDA formulation.

An example of track tree for the MDA formulation with a three scan depth is shown in Fig. 1, where the numbers represent
the measurement IDs that are associated with tracks. In this example, we assume that we have two resolved/confirmed tracks
at scan k − 2. At scan k − 1 and k, the received measurement sets are {z1, z2} and {z3}, respectively. Based on the MDA
formulation, the matrix A in (8) is given by
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A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0 1

 (9)

where the first two rows are used to satisfy the constraint that any two tracks in a global hypothesis are compatible and the
rest three rows are utilised to guarantee that one measurement can only be assigned to one track.

Ideally, all the candidate track hypotheses need to be considered in the solution space. The issue is that the number of
track hypotheses exponentially increases. This implies considering all the tracks may become intractable even with heuristic or
approximated approaches. One most commonly accepted approach to handle this issue is track-level pruning, which removes
tracks with low track hypothesis probability. Once pruned, only remaining track hypotheses can be considered in the solution
space.

Track-level pruning can easily be performed using the approximated track hypothesis probability (ATHP) [40]. Based on
the law of total probability, the track hypothesis probability p

(
T k
i

)
can be calculated as

p
(
T k
i

)
=

∑
Hk

i ∋Tk
i

p
(
Hk

i

)
(10)

where p
(
Hk

i

)
denotes the probability of the global hypothesis Hk

i , and is defined as

p
(
Hk

i

)
=

exp
(
L
(
Hk

i

))
1 +

∑
Hk

i ∈H
exp

(
L
(
Hk

i

)) (11)

where L
(
Hk

i

)
=

∑
Tk
i ∈Hk

i

L
(
T k
i

)
is the LLR score of the global hypothesis Hk

i , H being the set containing all global hypotheses.

Without track-level pruning, it could be intractable to enumerate all the global hypotheses. Applying the target-level pruning,
poor track hypotheses can be removed and consequently only countable global hypotheses can be considered in enumeration.

B. MWIS Formulation

The best global hypothesis generation problem can be also formulated as an MWIS problem of a weighted undirected graph.
An independent set of an undirected graph is defined as a subset with no pairwise adjacent elements of the vertex set. The
MWIS is the heaviest subset of non-adjacent nodes/vertices of a graph. A weighted undirected graph G = (V, E ,W) at each
scan for this problem is constructed by assigning a track T k

i to a graph vertex vi and each vertex with a weight wi corresponds
to its track score L

(
T k
i

)
. If two tracks cannot co-exist within a node or are incompatible due to shared observations, an edge

is constructed to connect them. Let |V| denote the cardinality (the number of elements) of vertex set V . Then, the problem of
best global hypothesis generation can be transformed to finding the MWIS as

argmax
x

|V|∑
i

wixi

s.t. xi + xj ≤ 1, ∀ (vi, vj) ∈ E

(12)

where xi ∈ {0, 1} is a binary variable to indicate that whether or not the ith track is included in the solution. To improve the
computational efficiency, this paper assumes that track-level pruning is performed. Therefore, the track hypotheses remained
after track pruning are considered in the solution space.

An example of track trees within 3 scan depth is illustrated in Fig. 2, in which the numbers represent the measurement IDs
that are associated with tracks. For this simple example, tracks 1, 2 and 3 originate from a common parent node 1; tracks 4 and
5 originate from a common node 3; tracks 2, 3 and 5 share a common non-dummy measurement 2. Based these observations,
one can construct an undirected graph as shown Fig. 3, where the numbers are track IDs.

Note that the MWIS problem is also known to be NP-hard. Therefore, it is imperative to find some heuristic or countable
approximation solutions.

IV. TABU-MHT ALGORITHM

This section proposes a Tabu search based approach to find the best global hypothesis. Tabu search is one of the state-of-
the-art general metaheuristic algorithms to find the approximate optimal solutions for a wide variety of hard combinatorial
optimisation problems [41]. Tabu search usually consists of two phases: initial solution generation phase and local search phase.
Compared with other heuristic algorithms, Tabu search enhances the performance of local search by introducing prohibition
rules, which prevent the search from visiting the previously-searched candidate solutions.
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Fig. 2: An example of track tree.
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45

Fig. 3: Undirected graph of the considered example.

For any feasible solution F = {i ∈ V : i ̸= j ∀j ∈ V s.t. {i, j} /∈ E}, the quality of the solution, denoted as W (F) =
|V|∑
i

wixi, is quantified by the total weight (summation) of all vertices. Given two solutions F1 and F2, F1 is better than F2

if and only if W (F1) > W (F2). The object function of Tabu search is thus given by W (F). The aim here is to find F
maximising W (F) using the two phases, initial phase and local search phase.

A. Initial Solution Generation

Let Θ denote the search space that composed of all possible solutions. The goal of the initial phase is to randomly generate
a set of possible candidate solutions. To achieve this, we first sort all tracks in a descending manner based on their track
scores. The initial phase starts from an initial solution F by randomly selecting a unique track vertex from the first N1

sorted tracks as these N1 tracks have relatively higher scores. Then, iteratively, randomly pick up a compatible track vertex
v = {v : v ∈ V\F , (v, l) /∈ E , ∀l ∈ F} and add it into F until there is no feasible vertex can be added based on the independence
constraint. In general, the initial phase only aims to find a candidate solution, i.e. a global hypothesis, and ignores the quality
of the solution, but ensures a rich diversity of the initial solutions for local search in a different region. This is achieved by
using a search length strategy that triggers a new initial solution if the quality of the previous solution never improve for a
number of consecutive iterations.

B. Local Search Phase

Local search is used to provide an attempt to find better immediate neighbourhood solutions for the initial solutions. A
neighbourhood of a candidate solution confines the search space and is typically defined by a move operator move. This
operator transforms a given solution F to a better neighbourhood solution, that is F̄ ∆

= F ⊕move. The proposed algorithm
considers two natural operators: ADD(i) and SWAP (i, j). These two operators are defined based on the two sets, MA and
MS . The set MA is composed of the vertices that are all excluded from the candidate solution F and not adjacent to all
vertices of F . The set MS consists of the vertices that are all excluded from the set F and adjacent to only one vertex in
F . The operator ADD(i) is defined as adding a vertex in MA to F . The neighbourhood solution resulted from this operator
is F̄A =

{
F̄A : F ⊕ADD (i) , i ∈ MA

}
. Clearly, the ADD(i) move operator always improves the quality of a solution.

The operator SWAP (i, j) is defined as replacing an existed vertex j ∈ F with its adjacent vertex i ∈ MS to generate a
neighbourhood solution: F̄S =

{
F̄S : F ⊕ SWAP (i, j) , i ∈ MS

}
. This operator can either improve or deteriorate the quality

of a solution. From this analysis, it is clear that an overall better solution can be selected by a union of these two neighbourhood
solutions, i.e., a hybrid movement. Note that both MA and MS could be an empty set if there is no such sets exist.

Tabu search introduces the so-called Tabu list to discourage the search from coming back to previously-examined solutions.
Invoking the fact that the operator ADD(i) always improves the quality of the current solution, the prohibition rule in the
proposed algorithm is designed as: a vertex that joins the solution F is free to leave F while a vertex that is removed from the
solution is not allowed to be added again into F for next TS iterations (Tabu tenure) except for the case it provides a better
solution.
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Consider the undirected graph shown in Fig. 4, where the weights are the same as their IDs. Suppose the candidate solution
is given by F = {1, 4, 5, 7}. For ADD(i), it is easy to verify that is MA an empty set based on the independence constraint.
Similarly, one can obtain MS = {6, 8, 9} for SWAP (i, j) and thus replacing {5} with {6} and replacing {7} with {8} or {9}
results in a better solution. Since the weight of node 9 is larger than that of node 6 and 8, the local search automatically choose
node 9 at the current iteration, leading to an improved candidate solution F = {1, 4, 5, 9}. In the next iteration, one can also
obtain MA = {8} for ADD(i) and MS = {6, 7} for SWAP (i, j). Since that the node 7 is excluded in the previous update
step and thus will be automatically blocked by the local search phase through a Tabu list as discussed above. Consequently,
the most favourable solution in terms of its quality obtained by these two operators at the this iteration is F = {1, 4, 6, 8, 9}.

1

2 3

45 7

86

9

Fig. 4: Undirected graph of the considered example.

The proposed algorithm examines the possible neighbourhood solutions based on their qualities at every iteration and selects
the most preferable one. The prohibition rule provides the possibility of local diversification by preventing the previously-
visited solutions from being re-searched for next several iterations. A new restart from a different randomized initial solution is
triggered if the quality of the solution obtained by the local search never improves for a maximum allowable consecutive search
depth. Although the heuristic approach cannot have theoretical guarantee of the optimal solution, the proposed randomized
multi-restart policy can help the search to escape from the local basin and hence can help to prevent from being trapped in a
local optimum solution.

Track level pruning using the ATHP concept is performed to enhance the computational efficiency. For pruning, we first
define a set Bglobal that is composed of feasible global hypothesis candidates and update it at every iteration. Using global
hypotheses in the set Bglobal obtained, the proposed algorithm then calculates the ATHP for each track, whose equation is
given in (10), and prunes the ones smaller than the threshold value designed.

The algorithm of the proposed Tabu search-based best global hypothesis generation is summarised in Algorithm 1.

V. GIBBS-MHT ALGORITHM

The paper also proposes a computationally tractable approximation to address the original MWIS problem described in (12).
Note that the approximation proposed is based on Gibbs sampling.

Gibbs sampling is a stochastic approach for Bayesian inference to approximate the posterior multivariate probability
distribution in polynomial time [42], [43], especially for large scale problems. Gibbs sampler is a special case of the Metropolis-
Hastings algorithm with an acceptance probability of one. The key idea of Gibbs sampling is that, given a joint distribution, it is
simpler to recursively sample random samples from a conditional distribution than directly from the posterior joint distribution.

Our proposition is to apply Gibbs sampling to sample candidate solutions of x in (12) and evaluate their corresponding
quality. Hence, the second MHT algorithm developed uses Gibbs sampling to generate an initial solution and recursively sample
candidate solutions using the conditional distribution. As candidate solutions and their corresponding quality are recursively
generated, sorting the solutions and finding the approximated solution, providing the best quality, are straightforward.

To apply Gibbs sampling, it is required to reformulate the original MWIS problem into a problem in which the key idea of
Gibbs sampling can be applied. Therefore, we first reformulate the original max-sum problem given in (8) to a new max-product
problem based on the property of track scores. From (3)-(5), we have

si = L
(
T k
i

)
= ln cki (13)

where cki denotes likelihood ratio between the true target hypothesis probability and false alarm hypothesis probability. This
implies that the max-summation problem (12) can be transformed to the max-product problem as

argmax
X

c (X) ,

s.t. c (X)
∆
=

(∏
i∈V

φi (xi)

) ∏
(vi,vj)∈E

φc (xi, xj)


X =

(
x1, . . . , x|V|

)
(14)

with

φi (xi) =

{
esi , xi = 1

1, xi = 0
(15)
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Algorithm 1. Best global hypothesis generation by Tabu search
Input: A weighted graph G = (V, E,W) generated by all tracks
at scan k, maximum allowable search depth L, maximum allowable
iterations nmax

Output: The best global hypothesis defined by set F∗, global hypoth-
esis candidate set Bglobal

1) begin
2) iter ← 0 {set the initial iteration counter as zero}
3) F∗ ← ∅ {set the initial solution as an empty set}
4) Bglobal ← ∅ (set the global hypothesis candidate set as an

empty set)
5) while iter < nmax do
6) F∗ ← random initial possible solution generated from G
7) initialise the Tabu list
8) Flocal ← F {Flocal is the local optimal solution in each

iteration during the loop}
9) Llocal ← 0 Llocal is the consecutive for local search
10) while Llocal < L do
11) F̄A, F̄S ← construct neighbourhood solutions based on

ADD(i) and SWAP (i, j)
12) F ← select the overall best solution F̄A∪F̄S according

to the quality function
13) Llocal ← Llocal + 1
14) iter ← iter + 1
15) update the Tabu list
16) if W (F) > W (Flocal) do
17) Llocal ← 0
18) Flocal ← F
19) end if
20) end while
21) if Flocal /∈ Bglobal do
22) Bglobal ←

{
Bglobal,Flocal

}
{update the global hy-

pothesis candidate set}
23) end if
24) if W (Flocal) > W (F∗) do
25) F∗ ← Flocal {update the best global hypothesis}
26) end if
27) end while
28) return F∗, Bglobal

φc (xi, xj) =

{
0, xi = xj = 1

1, otherwise
(16)

where φi (xi) is the node potential, guaranteeing a non-negative un-normalised probability to each possible value of the random
variable xi ∈ {0, 1}; φc (xi, xj) is the edge potential, providing a non-negative un-normalised weight to all the combinations
that (xi, xj) can take. The cost function c(X) can be regarded as an un-normalised joint distribution of a pairwise undirected
graphical model. The solution of (14) is a decoding problem, in which the goal is to find the most probable joint distribution.

The proposed max-product formulation enables utilisation of Gibbs sampling. The key idea proposed in this paper is to
consider each solution as a random variable that satisfies a distribution π(X). For the realisation, we first construct a finite-state
Markov chain whose state space is the set Θ of all feasible solutions (i.e. independent sets of graph G). Then, the Gibbs sampler
is utilised to generate random variables xi based on the proposed distribution proposal π(X) so as to find the best candidate
set. To ensure that the independent set solution with higher weights are more likely sampled, it is natural to construct the
sampling proposal π proportional to its corresponding weight/track scores as

π (X) ∝

 |V|∏
i=1

φi (xi)

 ∏
(vi,vj)∈E

φc (xi, xj)

 (17)

Enumerating all possible independent sets is impossible for real applications, which means direct sampling from (17) is
difficult. Hence, the concept of Gibbs sampling is adopted here, i.e. samples are generated by sweeping through all the
posterior conditionals, rather than from the posterior distribution itself. Then, the one-step transition kernel from one possible
solution X =

(
x1, . . . , x|V|

)
to another possible solution X̄ =

(
x̄1, . . . , x̄|V|

)
is obtained as

π
(
X̄ |X

)
=

|V|∏
m=1

πm

(
x̄m

∣∣x̄1, . . . , x̄m−1, xm+1, . . . , x|V|
)

(18)

More specifically, given solution x, the solution x̄ can be obtained by recursive sampling according to the following individual
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conditional distributions

x̄1 ∼ π1

(
x̄1

∣∣x2, . . . , x|V|
)

...

x̄m ∼ πm

(
x̄m

∣∣x̄1, . . . , x̄m−1, xm+1, . . . , x|V|
)

...

x̄|V| ∼ π|V|
(
x̄Nk

∣∣x̄1, . . . , x̄|V|−1

)
(19)

After constructing the Markov chain, it is necessary to prove that the generated Markov chain asymptotically converges
to its invariant distribution and the convergence property of the proposed Gibbs sampling. These aspects are investigated in
Theorem 1.

Theorem 1. Given any initial feasible joint event, the distribution of Gibbs samples (18) asymptotically converges to the target
distribution (17) with an exponential rate as∣∣πn

(
X̄ |X

)
− π

(
X̄
)∣∣ ≤ (1− 2β)

⌊n/2⌋ (20)

where πn
(
X̄ |X

)
denotes the nth power of transition kernel π

(
X̄ |X

)
, β = min

X,X̄∈Θ
π2
(
X̄ |X

)
∈ (0, 0.5] the least likely

two-step transition probability.
Proof: In general, the convergence of finite-state Markov chain is guaranteed by its irreducibility and regularity. The

irreducibility of a Markov chain is quantified in terms of the possibility that one state can be transferred to another state within
a finite number of steps. The regularity of a Markov chain can be checked by the positivity of the entries of some finite power
of its transition matrix.

Let ϑ = {ϑ |ϑi = x̄i, i ∈ {1, . . . ,m} , ϑj = xj , j ∈ {m+ 1, . . . , |V|}. From (14) and (18), we have

πm

(
x̄m

∣∣x̄1, . . . , x̄m−1, xm+1, . . . , x|V|
)

=
π
(
x̄1, . . . , x̄m, xm+1, . . . , x|V|

)
π
(
x̄1, . . . , x̄m−1, xm+1, . . . , x|V|

)
∝ π

(
x̄1, . . . , x̄m, xm+1, . . . , x|V|

)
∝

 |V|∏
i=1

φi (ϑi)

 ∏
(vi,vj)∈E

φc (ϑi, ϑj)


=

φm (ϑm)
∏

(vm,vj)∈E

φc (ϑm, ϑj)


×

 ∏
i∈V,i ̸=m

φi (ϑi)
∏

(vi,vj)∈E,i ̸=m

φc (ϑi, ϑj)


∝ φm (ϑm)

∏
(vm,vj)∈E

φc (ϑm, ϑj)

(21)

‘Proportion to’ in inequality (21) highlights the dependence of individual conditional distribution on ϑm, while all other
parts are formed as the normalisation constant.

Let 0n denote the n dimensional zero vector. Then, it follows from (21) that

π
(
0|V| |X

)
∝

|V|∏
m=1

φm (0) > 0

π
(
X̄
∣∣0|V|

)
∝

|V|∏
m=1

φm (xm) > 0

(22)

Then, the two-step transition kernel from any X ∈ Θ to any X̄ ∈ Θ satisfies

π2
(
X̄ |X

)
=
∑
ζ∈Θ

π
(
X̄ |ζ

)
π (ζ |X )

> π
(
X̄
∣∣0|V|

)
π
(
0|V| |X

)
> 0

(23)
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which means that the Markov chain
{
X(t)

}∞
t=1

generated by the Gibbs sampler is irreducible and recurrent, and therefore the
Markov chain will asymptotically converge to its invariant distribution, e.g. the posterior of the joint event, by the ergodic
theorem [44].

Since π2
(
X̄ |X

)
> 0, applying Lemma 2, presented in Appendix A, to π2

(
X̄ |X

)
gives

max
X

π2n
(
X̄ |X

)
−min

X
π2n

(
X̄ |X

)
≤ (1− 2β)

n

lim
n→∞

max
X

π2n
(
X̄ |X

)
= lim

n→∞
min
X

π2n
(
X̄ |X

)
≥ β > 0

(24)

Since Lemma 1, presented in Appendix A, states that max
X

πn
(
X̄ |X

)
is non-increasing and min

X
πn
(
X̄ |X

)
is non-

decreasing in n, (24) can be reformulated as

max
X

πn
(
X̄ |X

)
−min

X
πn
(
X̄ |X

)
≤ (1− 2β)

⌊n/2⌋

lim
n→∞

max
X

πn
(
X̄ |X

)
= lim

n→∞
min
X

πn
(
X̄ |X

)
> 0

(25)

Due to the asymptotical convergence property of the proposed Markov chain, we have

π
(
X̄
)
= lim

n→∞
max
X

πn
(
X̄ |X

)
= lim

n→∞
min
X

πn
(
X̄ |X

)
> 0 (26)

Note that π
(
X̄
)

lies between the minimum and maximum πn
(
X̄ |X

)
for any given state X , (20) can be directly ensured.

QED.

Theorem 1 shows that, given any initial state X(1) ∈ Θ, the generated Markov chain
{
X(t)

}∞
t=1

exponentially converges
to its stationary invariant distribution. Due to the convergence property, one can easily select a feasible solution as an initial
state for Gibbs sampler. For example, one can simply choose the initial solution by random selection of compatible tracks, as
presented in Sec. III.A.

Note that since Gibbs sampler is initialised with random values, samples generated at early iterations, known as the burn-in
phase, usually cannot represent the target distribution and need to be discarded. With the aid of Gibbs sampler, one can also
easily obtain the approximated marginal track hypothesis probability p (xi = 1) as

p (xi = 1) =
ni

nmax − nburn−in
(27)

where nmax denotes maximum allowable Gibbs samples, nburn−in the burn-in samples, ni the number of samples that xi = 1
occurs after the pre-convergent burn-in phase. The proposed Gibbs sampling-aided implementation algorithm also performs
track-level pruning to improve its computational efficiency. Since the approximated hypothesis probability p (xi = 1) can be
readily obtained from (27), track level pruning can be easily performed by thresholding p (xi = 1).

Algorithm 2 summarises the proposed Gibbs sampling-based implementation algorithm.

VI. NUMERICAL SIMULATIONS

This section validates the proposed algorithms through numerical simulations with comparisons to the mainstream MDA-
MHT implementation algorithm.

A. Simulation Setup

The following six different challenging scenarios are conducted. Scenario 1: twelve constant moving targets with different
birth and death time. Scenario 2: 20 close moving targets with three 3g coordinated turns. Scenario 3: 40 close moving targets
with three 3g coordinated turns. Scenario 4: 20 random moving targets. Scenario 5: 40 random moving targets. Scenario
6: 60 random moving targets. The ground truths of these six scenarios are presented in Fig. 5. For all these scenarios, the
measurements are generated with detection probability PD = 0.95 and the clutter is assumed to be uniformly distributed in
the surveillance region with its number at one scan being Poisson with spatial density λF = 10−7.

The state variable of each target contains planar position and velocity and we apply simple constant velocity model with
linear position measurement model for target state prediction and correction. More specifically, the state transition matrix and
process noise matrix are given as

F
∆
= I2×2 ⊗

[
1 T
0 1

]
, Q

∆
= I2×2 ⊗ σ2

v

[
T 3/3 T 2/2
T 2/2 T

]
(28)

where I2×2 denotes the 2 × 2 identity matrix, ⊗ the Kronecker product, T = 1s the sampling period, and σv = 22m/s2 is
standard deviation of the process noise. The measurement matrix and measurement noise matrix are as follows

H
∆
= I2×2 ⊗

[
1 0

]
, R

∆
= σ2

rI2×2 (29)
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Algorithm 2. Best global hypothesis generation by Gibbs sampling
Input: A weighted graph G = (V, E,W) generated by all tracks at
scan k, maximum allowable Gibbs samples ngibbs, burn-in samples
nburn−in

Output: The best global hypothesis defined by Xbest, marginal
distribution p(xi), ∀i ∈ [|V|]

1) begin
2) iter ← 0 {set the initial iteration counter as zero}
3) x(1) ← random initial possible solution generated from G
4) cbest ← − inf {set the initial best cost as -inf}
5) for i = 1 : |V| do
6) ni ← 0 {set the initial event counter as zero}
7) end for
8) while iter < nmax do
9) for i = 1 : |V| do
10) generating samples according to (19)
11) end for
12) X(iter) =

(
x
(iter)
1 , . . . , x

(iter)
|V|

)
{one Gibbs sample}

13) if iter > nburn−in do
14) c

(
X(iter)

)
← calculate the current cost function

15) if c
(
X(iter)

)
> cbest do

16) cbest ← c
(
X(iter)

)
17) Xbest ← X(iter)

18) end if
19) for i = 1 : |V| do
20) if x

(iter)
i = 1 do

21) ni ← ni + 1
22) end if
23) end for
24) end if
25) iter ← iter + 1
26) end while
27) for i = 1 : |V| do
28) p (xi = 1) ← ni/ (nmax − nburn−in) {Approximated

marginal track probability}
29) end for
30) return Xbest, p(xi)

where σr = 100m is the standard deviation of the measurement noise. For the above model, the standard Kalman filter for
each target is applied as

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T +Q

K = Pk|k−1H
T
(
HPk|k−1H

T +R
)−1

x̂k|k = x̂k|k−1 +K
(
zk −Hx̂k|k−1

)
Pk|k = Pk|k−1 −KHPk|k−1

(30)

For every new track, the state estimation error covariance is initialised using the one-point method [45] with maximum
velocity bound 600m/s and the new target density is set as λN = 10−11. Gating is performed with a threshold such that the
gating probability is PG = 0.999. For SPRT, the false track confirmation probability and the true track deletion probability are,
respectively set as α = 10−6 and β = 10−3. Since the detection probability and clutter spatial density may vary in practical
implementations, we choose these two parameters as PD = 0.75 and λF = 10−8, which are not matched with the ones used in
measurement generation. The scan depth of all MHTs is set as p = 3. In order to remove the hypothesis with low probability,
the threshold of track level pruning is selected as pth = 10−6. Any hypothesis with probability that is below this threshold
is removed. The design parameters for Tabu search-based approach are chosen as L = 10, nmax = 100, and parameters for
Gibbs sampling-based implementation algorithm are set as nmax = 2000, nburn−in = 1000. All experiments are performed
on Matlab 2016b platform using an Intel Core i5-6500 CPU.

To demonstrate the effectiveness, the performance of the proposed algorithms are compared with that of the mainstream
MDA formulation of MHT with Langrangian relaxation approach. As shown in [28], Langrangian relaxation implementation
algorithm outperforms both m−best assignment and linear programming solutions. Therefore, it is reasonable to compare the
proposed methods with the Langrangian approach.

For performance evaluation, the following commonly accepted metrics [46] are considered.
(1) Miscorrelation ratio of true tracks RMC . The ratio of the number of false measurement-to-track associations to total true

tracks.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Ground truth with start point o and death point x: (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4; (e)
scenario 5; and (f) scenario 6.

dcp (X,Y )
∆
=


[
1

n

(
min
π∈Πn

m∑
i=1

dc
(
xi, yπ(i)

)p
+ cp (n−m)

)]1/p
, m ≤ n

dcp (Y,X) , m > n

(31)

(2) Correct correlation ratio of true tracks RCC . The ratio of the number of correct measurement-to-track associations to
total true tracks.

(3) Average number of true target IDs associate with a true track NID. For perfect matching in the ideal case, all measurements
that allocated to a true track should match to the true target, i.e. NID = 1. Similarly, NID > 1 holds for imperfect matching.

(4) Average true track life Tavg . Average true track life measured in scan numbers.
(5) Running time te. The execution time for a sample run.
(6) Optimal sub-pattern assignment (OSPA) distance. Overall evaluation of cardinality and position estimation error for MTT.

Let X and Y be the position estimation set and true target position set, respectively. The cardinality of these two sets are
m and n, respectively. Denote Πn as the set of all permutations on {1, 2, . . . , n} for any positive integer n. dc

(
xi, yπ(i)

)
=

min
(
d
(
xi, yπ(i)

)
, c
)

with d
(
xi, yπ(i)

)
is the cut-off Euclidean distance between two vectors with d

(
xi, yπ(i)

)
being the

Euclidean distance. Then, for c > 0 and 1 ≤ p < ∞, the OSPA distance dcp (X,Y ) is defined as (31) [47]. The order parameter
p in (31) determines the sensitivity of dcp (X,Y ) in penalizing estimation outliers, while the cut-off parameter c determines
the relative weighting of the penalties allocated to cardinality and localization errors. In all simulations, these two parameters
are set as p = 2, c = 1000.

B. Simulation Results

Table 1 summarises all the performance metrics obtained by these three different approaches of fifty Monte-Carlo runs,
where the values are calculated as the mean value of all runs. The best one of each metric is highlighted in bold font. One
sample run of OSPA distances are presented in Fig. 6.
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TABLE I: Comparison results of Monte-Carlo simulations.

Tracker RMC RCC NID Tavg te OSPA

Scenario 1
MDA-MHT 0.0671 0.9654 1.2265 44.2603 23.8042s 191.4025
Tabu-MHT 0.0835 0.9636 1.3087 53.9755 20.2255s 179.9225
Gibbs-MHT 0.0809 0.9660 1.1864 50.0071 16.5422s 181.6081

Scenario 2
MDA-MHT 0.0784 0.9538 1.0568 53.6069 7.7664s 153.5685
Tabu-MHT 0.0882 0.9549 1.0604 63.4154 5.9839s 149.8836
Gibbs-MHT 0.0854 0.9557 1.0470 53.6069 5.0561s 152.0427

Scenario 3
MDA-MHT 0.0758 0.9570 1.0414 51.2003 15.9088s 159.4479
Tabu-MHT 0.0911 0.9540 1.0609 62.0841 13.1394s 154.6242
Gibbs-MHT 0.0854 0.9591 1.0383 57.6434 11.3569s 155.4897

Scenario 4
MDA-MHT 0.2279 0.4102 2.3988 15.0391 11.3561s 597.8526
Tabu-MHT 0.2386 0.4382 1.6182 24.9880 8.5660s 357.7429
Gibbs-MHT 0.2479 0.4502 1.6652 26.4104 5.1800s 317.1836

Scenario 5
MDA-MHT 0.2142 0.3013 2.7500 11.6479 237.5427s 687.0442
Tabu-MHT 0.2242 0.3313 2.8577 22.0750 37.1126s 362.0764
Gibbs-MHT 0.2557 0.3160 2.7442 26.5581 19.6717s 323.1499

Scenario 6
MDA-MHT 0.2138 0.3042 2.9515 12.3592 1403.6657s 786.1761
Tabu-MHT 0.2829 0.3091 2.8969 23.5577 124.7696s 393.8384
Gibbs-MHT 0.2205 0.3375 2.7596 25.6316 43.7115s 362.9895

For scenarios 1 - 3, the performance of these three different MHT implementation algorithms is comparable. Although
MDA-MHT has lowest miscorrelation rate of true tracks, it is evident that Tabu-MHT provides the best overall performances
in terms of OSPA distance and has longer true track life, which is more desirable for long-time consecutive tracking. As a
comparison, Gibbs-MHT is the most efficient one among these three approaches and shows better performance in ID switch
as well as correct correlation ratio. The peak values in Fig. 6 (a) are caused by track initialisation of new birth targets. As
for the latter three random moving cases, although MDA-MHT still has lowest miscorrelation rate of true tracks, its OSPA
distance is almost twice than the proposed two algorithms, leading to the fact that the proposed two MHT implementation
algorithms could have more robust estimation performance. Gibbs-MHT shows best performance in estimation accuracy and
is also the most efficient one. Notably, for the cases with a large number of targets (scenario 6 for example), the execution
time of Gibbs-MHT is only 43.7115s, whereas Tabu-MHT takes 124.7696s and MDA-MHT requires 1403.6657s.

Based on these results, it can be concluded that the proposed Gibbs-MHT and Tabu-MHT algorithms yield better overall
performance, compared with the MDA-MHT algorithm. Note that it is clear that the number of the track hypotheses exponen-
tially increases as the size and complexity of the problem grow. Therefore, the proposed algorithms are expected to provide
better performance as the problem becomes more complex. The simulation results obtained confirm this expectation: as the
complexity and the size of the scenario increases, the performance improvement becomes more significant. Furthermore, it is
obvious from the simulation results that the proposed Gibbs-MHT drastically reduces the computational complexity without
sacrificing the tracking performance.

VII. CONCLUSIONS

This paper developed two new algorithms for MHT implementation with the MWIS formulation: Tabu-MHT and Gibbs-MHT
algorithms. The main purpose of these developments is to improve the computational efficiency while maintaining/enhancing
the tracking performance. For the Tabu search based algorithm, random initial solutions are first generated to guarantee the
diversity of the final solution. Then, two basic operators are used in each local search iteration to find better neighbourhood
solutions. In the second proposed MHT algorithm, the MWIS problem is first reformulated to a max-product problem to
successfully apply Gibbs sampling. Then, the Gibbs sampling based algorithm is designed to find the best approximated
global hypothesis. Theoretical analysis shows that the proposed Markov chain generated by Gibbs sampler converges to its
invariant distribution with exponential rate. Simulation results confirm that the proposed MHT implementation algorithms are
highly efficient and provide better overall performance than the mainstream MDA-MHT in most scenarios. Especially, as can
be deduced, it is clear from the simulation results that the performance improvement of the proposed algorithms becomes
significant in large-scale problems.

APPENDIX A
LEMMAS 1 AND 2

This appendix collects two key lemmas in [44] that are used in the proof of Theorem 1.

Lemma 1. Let π be the transition matrix of a finite-state Markov chain and let πn be the nth order transition probabilities.
Then, for any state and n ≥ 1, we have

max
θ

πn+1 (χ |θ ) ≤ max
ς

πn (χ |ς )

min
θ

πn+1 (χ |θ ) ≥ min
ς

πn (χ |ς )
(32)
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: OSPA distance with MDA-MHT (green), Tabu-MHT (red) and Gibbs-MHT (blue): (a) scenario 1; (b) scenario 2; (c)
scenario 3; (d) scenario 4; (e) scenario 5; and (f) scenario 6.

Lemma 2. Let α = min
χ,θ

π (χ |θ ) and the transition matrix π of a finite-state Markov chain satisfy π > 0. Then, for any state

and n ≥ 1, we have

max
θ

πn+1 (χ |θ )−min
θ

πn+1 (χ |θ )

≤
[
max

ς
πn (χ |ς )−min

ς
πn (χ |ς )

]
(1− 2α)

max
ς

πn (χ |ς )−min
ς

πn (χ |ς ) ≤ (1− 2α)
n

lim
n→∞

max
ς

πn (χ |ς ) = lim
n→∞

min
ς

πn (χ |ς ) ≥ α > 0

(33)
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