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Abstract

This paper investigates the problem of distributed multi-target tracking over a large-scale sensor network, con-

sisting of low-cost sensors. Each local sensor runs a joint probabilistic data association filter to obtain local estimates

and communicates with its neighbours for information fusion. The conventional fusion strategies, i.e., consensus

on measurement and consensus on information, are extended to multi-target tracking scenarios. This means that

data association uncertainty and sensor fusion problems are solved simultaneously. Motivated by the complementary

characteristics of these two different fusion approaches, a novel distributed multi-target tracking algorithm using a

hybrid fusion strategy, e.g., a mix between consensus on measurement and consensus on information, is proposed. A

distributed counting algorithm is incorporated into the tracker to provide the knowledge of the total number of sensor

nodes. The new algorithm developed shows advantages in preserving boundedness of local estimates, guaranteeing

global convergence to the optimal centralised version and being implemented without requiring no global information,

compared with other fusion approaches. Simulations clearly demonstrate the characteristics and tracking performance

of the proposed algorithm.

Index Terms

Multi-target tracking, Multi-sensor fusion, Distributed fusion, Joint probabilistic data association, Hybrid fusion

I. INTRODUCTION

Wireless sensor networks have attracted great attention in recent decades thanks to their critical importance in

a wide range of applications, including environmental monitoring [1], ground vehicle tracking [2]–[4], air traffic

control [5], spacecraft navigation [6], vision-based pedestrian tracking [7], etc. The availability of low-cost sensors

has enabled employment of multiple sensor nodes to large-scale sensing tasks [8]. Low-cost sensors, however, are

generally subject to high clutter rate and low detection probability, leading to performance degradation, especially

in multi-target tracking (MTT) scenarios [9]. Leveraging proper fusion algorithms over the sensor network could

counteract the drawbacks of low-cost sensors and thus enhance the tracking performance. To this end, this paper

aims to address the problem of distributed MTT in a sensor network.

The multi-sensor data integration or fusion can be categorised into three architectures in general: centralised,

decentralised and distributed [10], [11], as shown in Fig. 1. The centralised fusion architecture simultaneously
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processes the measurements provided by all sensors in a fusion centre, which directly connects with all sensor

nodes. Although data fusion through a fusion centre is ideally Bayesian optimal, the fusion centre cannot effectively

communicate with all sensors for large-scale sensor networks because of physical constraints, e.g., communication

delay, limiting communication range. Unlike centralised fusion, the decentralised architecture utilises several fusion

centres, capable of communicating with several local sensors, as backups in data integration, thus showing improved

robustness against system failure. Each sensor node in the distributed architecture performs fusion using the

information only obtained from locally connected neighbours in a peer-to-peer fashion. As the distributed fusion

architecture requires no fusion centre, it could provide enhanced robustness to sensor failure and great flexibility,

compared with the other two types of architectures. For this reason, this paper adapts distributed estimation

framework as the fusion architecture.

Fusion 

Centre

(a)

Fusion 

Centre
Fusion 

Centre

(b) (c)

Fig. 1. Different multi-sensor fusion architectures. The circle denotes the local sensor node and the black solid lines refer to the communication

between one local sensor and the fusion centre or two sensors. (a) Centralised fusion architecture: all sensor nodes are connected the fusion

centre. (b) Decentralised fusion architecture: sensor nodes are allocated to several fusion centres either statically or dynamically. (c) Distributed

fusion architecture: sensor nodes only communicate with their neighbours in a peer-to-peer fashion.

Generally, a distributed MTT algorithm contains two main components: the local multi-target tracker for each

sensor node and the distributed information fusion algorithm for locally connected sensors. There are several well-

established algorithms available in the literature to address local MTT problems: nearest neighbour (NN) filter

[12], probabilistic data association (PDA) filter [13], joint probabilistic data association (JPDA) filter [14]–[17] and

multiple hypothesis tracking (MHT) [18]–[21]. JPDA filter is used as the baseline local tracker in this paper because

of its balance between performance and computational cost. In the fusion stage, each sensor node communicates with

its neighbours through a network topology to perform estimation fusion. Note that although distributed multi-sensor

target tracking for single target is well-established, its direct extension to the MTT scenario is not straightforward

due to the measurement origin uncertainty and hence requires careful adjustment. This is the main concern of this

paper.

A. Related Work

In distributed fusion, the control-theoretic consensus algorithm is a powerful tool for performing network-wide

computation tasks, such as averaging of quantities and functions [22]–[25]. The promising feature of consensus-based

framework is its global convergence and flexibility: the consensus algorithm can be applied to any connected sensor

network for information fusion with guaranteed global convergence. The Kalman consensus filter (KCF) is the first
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paradigm that exploits the benefits of average consensus algorithm in distributed state estimation [23], [26], [27].

KCF consists of two steps in fusion: the first step utilised an information Kalman filter to update the local estimates

by summation of the information received from local neighbours; the second step applies the consensus on estimates

(CE) strategy to compute the average mean of all local estimates. This simple averaging computation, however,

cannot guarantee satisfactory performance for some scenarios, since the CE fusion strategy never exploits the useful

covariance matrix [28]. This issue is partially resolved by a convex combination of local estimates in diffusion

Kalman filter (DKF) via covariance intersection [29]. Improvements over KCF were also found in [30]–[32], where

an algorithm, termed as information consensus filter (ICF), was proposed to address the issue of naive sensors

(e.g., target is outside the sensor’s field-of-view). Apart from CE, the well-known covariance intersection provides

a different point of view in information fusion [33]. This conservative approach computes the geometric mean

of local probability density functions via the minimisation of a weighted Kullback-Leibler divergence. Distributed

implementation of covariance intersection applies average consensus algorithm on information-related terms [33],

thus, termed as consensus on information (CI). However, this strategy has never been extended to multi-target

tracking scenario, where data association uncertainties need to be carefully addressed.

A multi-sensor multi-target tracking algorithm was proposed in [34] by using a modified DBSCAN clustering

for track-to-track association. However, this algorithm requires a fusion centre to collect all information from

local sensors and therefore is not robust against the system failure. In [35], a distributed multi-target tracker was

proposed based on the CE strategy. This method, therefore, requires every sensor node and its neighbours have

joint observability or at least detectability about the target of interest. Improved results were reported in [36] by

combining PDA filter with consensus on information weighted local estimates. However, this approach requires the

global information on the total number of sensors Ns, e.g., partially distributed. In practice, an unexpected sensor

failure will inevitably change the total number of nodes, leading to performance degradation if the original value

of Ns is used. Distributed NN filter for multi-target tracking to address track ambiguity was proposed in [37]. By

incorporating consensus algorithm with Random Finite Set (RFS) filters (e.g., Probability Hypothesis Density filter

[38], [39], multi-Bernoulli filter [40]), distributed MTT algorithms were proposed without data association. These

approaches, however, cannot preserve track continuity, e.g., no target identity information. Apart from consensus,

another mainstream in distributed multi-target tracking is sequentially fuse the information between two connected

sensors [9], [41], [42]. Although this strategy is scalable, it requires each sensor’s field-of-view to cover the entire

surveillance region, which is not practical [42].

B. Contribution and Organisation

This paper develops distributed multi-target tracking algorithms by exploiting different fusion strategies: dis-

tributed JPDA with consensus on measurement (DJPDA-CM), distributed JPDA with consensus on information

(DJPDA-CI) and distributed JPDA with hybrid consensus (DJPDA-HC). The main contributions are:

(1) The conventional consensus on measurement (CM) and CI strategies are extended to the MTT scenario,

addressing the inherent data association uncertainty issue. Specifically, except for local estimates, the data association

uncertainty-related term of each sensor node is also shared with its neighbours for information fusion.
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(2) A new distributed multi-target tracking algorithm with hybrid fusion strategy, termed as DJPDA-HC, is

proposed by exploiting the benefits of both DJPDA-CM and DJPDA-CI. The proposed DJPDA-HC filter is a fully

distributed tracker without utilising any global information; thus, this approach has strong robustness against sensor

failures. Theoretical analysis and extensive simulations demonstrate that DJPDA-HC outperforms DJPDA-CM and

DJPDA-CI under various conditions.

Note that this paper also derives the centralised JPDA as a reference for performance evaluation. Performance

of all the distributed JPDA algorithms is compared to that of the centralised one through extensive numerical

simulations. Results reveal that the proposed DJPDA-HC algorithm outperforms others under various conditions.

The rest of the paper is organised as follows. Section II presents some preliminaries and backgrounds. Section

III derives the centralised JPDA filter as a performance benchmark. In Sec. IV, distributed JPDA algorithms are

proposed by using CM and CI fusion strategies, followed by the proposed DJPDA-HC shown in Sec. V. Finally,

numerical results from various simulations are demonstrated.

II. BACKGROUNDS AND PRELIMINARIES

This section firstly presents a brief description of the system model that will be utilised in the following sections.

Then, the problem formulation of this paper will be addressed.

A. System Modelling

The set of target states and measurements received at scan k are, respectively, defined as

Xk =
{
x1k, ..., x

Nk

k

}
, Zk =

{
z0k, z

1
k, ..., z

Mk

k

}
(1)

where Nk denotes the number of targets at scan k, xik the ith target at scan k, Mk the number of measurements

received at scan k, zjk (j 6= 0) the jth measurement received at scan k, z0k the dummy measurement for convenient

representation of miss detection.

Consider the following dynamical system

xik = f ik−1
(
xik−1

)
+ wi

k−1

zik = hik
(
xik
)

+ ηik

(2)

where xik ∈ Rn and zik ∈ Rm denote the system state and the corresponding measurement at time step k, respectively.

The nonlinear functions f ik
(
xik
)

and hik
(
xik
)

correspond to the system state evolution and measurement equations,

respectively. The signals wi
k and ηik are process noise and measurement noise, which are assumed to be zero-mean

Gaussian with covariances Qi
k and Ri

k. For convenience, we make the following general assumptions, which are

widely-accepted in MTT problems.

Assumption 1. Each target can generate at most one measurement and each measurement can originate from at

most one target. Each target-generated measurement is independent of each other and is detected with probability

PD with measurement likelihood p(z |x ).
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Assumption 2. The clutter distribution is assumed to be unknown a priori and is thus considered as Poisson

distribution. Clutters or false alarms are modelled by a local Poisson point process (PPP) with intensity λFA =

NFA/Vs with NFA being the average number of clutters of one scan and Vs being the sensor detection volume.

B. Problem Formulation

Suppose that Ns sensors participate in a cooperative distributed estimation mission, e.g., actively broadcasting

their local information to their neighbours. For this multi-sensor system, we use a partially connected undirected

graph G = (V, E) to represent the communication topology, where V = {ν1, ν2, . . . , νNs
} is a set of vertices

that represent Ns sensors and E = {(i, j) ∈ V × V} is a set of edges that stand for the relationship between two

neighbouring sensors in the topology. If two sensors (i and j) are adjacent, namely, they can communicate with

each other, then (νi, νj) ∈ E . Denote Ni as the set of the neighbours (locally connected) of sensor i including

sensor i.

The aim of this paper is to design a distributed multi-target tracking algorithm using a partially connected sensor

network. Each sensor node runs a local JPDA algorithm and the local estimations are then fused in a distributed

way. Note that in a partially or not fully connected sensor network, each sensor can only communicate with its

neighbours.

III. CENTRALISED JPDA FILTER: A BENCHMARK

An optimal fusion strategy and benchmark for performance evaluation of distributed state estimation algorithms is

centralised estimation, which processes the measurements from all sensors simultaneously through a fusion centre.

For centralised implementation of multi-sensor JPDA filter, we will utilise the information filter, which is proved

to be useful in information fusion [43].

JPDA assumes that each measurement can originate from a number of candidate targets in data association.

Therefore, the posterior probability distribution of each target obtained from JPDA filter is a Gaussian mixture

distribution. Since propagation of the Gaussian mixture distribution over time is practically intractable due to the

explosion of mixture components, JPDA utilises a single Gaussian distribution to approximate the Gaussian mixture

at each time instant to reduce the computational burden. More specifically, the state estimation is updated by utilising

a pseudo innovation term, e.g., a weighted sum of the original innovation terms,

z̃ik =

Mk∑
j=1

βi
j z̃

i
j,k =

Mk∑
j=1

βi
j

(
zj,k − ẑik

)
(3)

where ẑik = hik

(
xik|k−1

)
stands for the predicted measurement of the ith target and βi

j represents the marginal

association probability that the jth measurement is associated with the ith target. Details of how to calculate the

marginal association probability can be found in [14], [15].

Applying the pseudo innovation term z̃ik to standard extended Kalman filter paradigm generalises the classical

JPDA filter to accommodate nonlinear system (3), via linearising the state and measurement equations, as
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(1) Prediction:

xik|k−1 = f ik−1

(
xik−1|k−1

)
P i
k|k−1 = F i

k−1P
i
k−1|k−1

(
F i
k−1
)T

+Qi
k−1

(4)

(2) Measurement Update:

Si
k = Hi

kP
i
k|k−1

(
Hi

k

)T
+Ri

k

Ki
k = P i

k|k−1
(
Hi

k

)T (
Si
k

)−1
xik|k = xik|k−1 +Ki

kz̃
i
k

P i
k|k = P i

k|k−1 −K
i
k

(
1− βi

0

)
Si
k

(
Ki

k

)T
+Ki

kP̄
i
k

(
Ki

k

)T
(5)

where F i
k =

∂fi
k

∂xk

(
xk|k

)
is the linearised system matrix, Hi

k =
∂hi

k

∂xk

(
xk|k−1

)
the linearised measurement matrix,

and P̄k a positive semi-definite matrix representing the measurement origin uncertainty and takes the form

P̄k =

Mk∑
j=1

βi
j z̃

i
j,k

(
z̃ij,k
)T − z̃ik(z̃ik)T (6)

For the purpose of deriving information JPDA filter, define Y i
k|k =

(
P i
k|k

)−1
and yik|k =

(
P i
k|k

)−1
xik|k as the

information matrix and the information vector, respectively. As derived in Appendix A, the information form of

JPDA filter is given by

Y i
k|k = Y i

k|k−1 + Īik

xik|k =
(
Y i
k|k−1 + Iik

)−1 (
yik|k−1 + iik + βi

0Iikx
i
k|k−1

) (7)

where the measurement-related terms are defined as

Iik =
(
Hi

k

)T (
Ri

k

)−1
Hi

k, iik =
(
Hi

k

)T (
Ri

k

)−1 Mk∑
j=1

βi
jz

i
j,k

Īik = Y i
k|k−1K

i
k

{[(
1− βi

0

)
Si
k − P̄ i

k

]−1 − (Ki
k

)T
Y i
k|k−1K

i
k

}−1 (
Ki

k

)T
Y i
k|k−1

(8)

Note that iik in Eq. (7) is the measurement information, which clearly reveals that JPDA utilises a weighted

sum of all candidate measurements. The term βi
0Iikx

i
k|k−1 quantifies target miss detection. If the ith target is miss

detected, then, βi
0 = 1 and βi

j = 0, which means iik = 0. Therefore, only prior information can be utilised for

update. The summation of iik and βi
0Iikx

i
k|k−1 determines the total amount of information that JPDA can leverage

to update the ith target. Due to data association uncertainty, there exist two information matrix contributions, e.g.,

Iik and Īik in information JPDA filter. Notice that the inverse of Y i
k|k−1 + Īik is the posterior covariance matrix,

including data association uncertainty, of the ith target, provided by JPDA filter, whereas the inverse of Y i
k|k−1 +Iik

can be interpreted as the ideal covariance matrix of the ith target without any association uncertainty. It is easy

to verify that Īil,k = Iil,k when βi
l,0 = 0 and P̄ i

l,k = 0, e.g., no data association uncertainty. This means that the

nonlinear information JPDA filter reduces to classical extended information filter for single target tracking without

any clutters.

In MTT over a sensor network, each sensor node orders its estimated tracks differently and therefore track-to-

track association is required to associate the tracks from different sensors that represent the ith target [44]. There
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are a number of elegant choices for solving the track-to-track association problem in combinatorial optimisation by

reformulating the problem as a network flow [45] or using approximate Lagrangian relaxation approach [46]–[48].

Considering the balance between accuracy and efficiency, the Lagrangian relaxation method is utilised in this paper.

After finding the same source origin of local tracks, information fusion can be performed based on the property

of information filter: incorporating additional information from other sensors could be achieved by summation

of the corresponding information terms. This implies that the optimal centralised JPDA over Ns sensors can be

implemented as

Y i,c
k|k = Y i

k|k−1 +

Ns∑
l=1

Īil,k

xi,ck|k =

(
Y i
k|k−1 +

Ns∑
l=1

Iil,k

)−1 [
yik|k−1 +

Ns∑
l=1

(
iil,k + βi

l,0Iil,kx
i
k|k−1

)] (9)

It is clear that that centralised estimation requires full information of all sensors. Considering the fact that each

sensor usually can only communicate with its neighbours due to communication limit, this paper will develop

distributed implementation algorithms based on average consensus algorithm to recover the performance of the

centralised estimation (9). The centralised JPDA filter will be utilised as a benchmark for the performance evaluation

of the algorithms developed.

IV. DISTRIBUTED JPDA FILTER USING CONSENSUS ON MEASUREMENT AND CONSENSUS ON INFORMATION

This section extends conventional fusion strategies, e.g., consensus on measurement and consensus on information,

to MTT scenarios on the basis of JPDA. Before providing the main results, the average consensus algorithm is

briefly reviewed first.

A. Average Consensus

To perform estimation fusion in a distributed way, the concept of average consensus is adopted here. The average

consensus algorithm is used to obtain the mean value of the information of all sensors in a distributed way without

all-to-all communications; thus consensus-based distributed estimation can be applied to any generic connected

sensor network. Denote al as the available information from the lth sensor and al is initialised as al(0). Then, the

distributed average consensus algorithm [22], [23] at the mth iteration is defined as

al (m) =
∑
l′∈Nl

πl,l′al′ (m− 1) (10)

where πl,l′ is the consensus gain, which satisfies the condition
∑

l′∈Nl

πl,l′ = 1 with πl,l′ ≥ 0. The convergence rate

of average consensus algorithm depends on the consensus gain and the algebraic connectivity of graph G. Typical

choices of πl,l′ that guarantee the stability of the consensus phase are Metropolis weight and maximum-degree

weight [49].

Lemma 1. [22], [23] Under the assumption that the sensor network is strongly connected, by running the iterative

algorithm as in Eq. (10), the information of all sensors asymptotically converges to the initial average value as

lim
m→∞

al (m) =
1

Ns

Ns∑
l′=1

al′ (0) (11)
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B. Distributed JPDA Filter Using Consensus on Measurement

DJPDA-CM aims to compute the summations
Ns∑
l=1

Īil,k,
Ns∑
l=1

Iil,k and
Ns∑
l=1

(
iil,k + βi

l,0Iil,kx
i
l,k|k−1

)
in Eq. (9) through

a distributed way to recover the performance of centralised JPDA filter. Since these three terms are measurement-

related, this fusion strategy is therefore called consensus on measurement. Define consensus variables V i
l,k, Gi

l,k,

vil,k, which are initialised as

V i
l,k (0) = Īil,k, Gi

l,k (0) = Iil,k, vil,k (0) = iil,k + βi
l,0Iil,kx

i
l,k|k−1 (12)

By sharing V i
l,k, Gi

l,k, vil,k with locally connected sensors using L communication iterations at every time instant,

the measurement update of DJPDA-CM is given by

Y i
l,k|k = Y i

l,k|k−1 +NsVl,k (L)

xil,k|k =
(
Y i
l,k|k−1 +NsGl,k (L)

)−1 (
yil,k|k−1 +Nsvl,k (L)

) (13)

where Vl,k (L), Gl,k (L), vl,k (L) denote the values of V i
l,k, Gi

l,k, vil,k after performing L steps of average consensus.

The detailed implementation of the proposed DJPDA-CM algorithm is summarised in Algorithm 1. The following

lemma analyses the asymptotic performance of DJPDA-CM.

Lemma 2. Under the assumption that the sensor network is strongly connected with previously converged local

estimates, e.g., xil,k−1|k−1 = xi,ck−1|k−1 , Y i
l,k−1|k−1 = Y i,c

k−1|k−1 , DJPDA-CM (13) will asymptotically converge to

the centralised JPDA (9) at current time instant.

Proof. According to Lemma 1, applying average consensus algorithm to V i
l,k, Gi

l,k, vil,k gives

lim
m→∞

V i
l,k (m) =

1

Ns

Ns∑
l′=1

Īil′,k

lim
m→∞

Gi
l,k (m) =

1

Ns

Ns∑
l′=1

Iil′,k

lim
m→∞

vil,k (m) =
1

Ns

Ns∑
l′=1

(
iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)
(14)

Therefore, the measurement update of DJPDA-CM with infinite number of iterations can be formulated as

Y i
l,k|k = Y i

l,k|k−1 +

Ns∑
l′=1

Īil′,k

xil,k|k =

(
Y i
l,k|k−1 +

Ns∑
l′=1

Iil′,k

)−1 [
yil,k|k−1 +

Ns∑
l′=1

(
iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)] (15)

Under the assumption that the previous local estimates are equal to the centralised fusion as xil,k−1|k−1 =

xi,ck−1|k−1 , Y i
l,k−1|k−1 = Y i,c

k−1|k−1 , it is straightforward to verify that xil,k|k = xi,ck|k , Y i
l,k|k = Y i,c

k|k from Eq

(15).

Remark 1. Lemma 2 reveals that the advantage of DJPDA-CM is that it is asymptotically optimal at each time

instant provided that the priors are converged. However, since only finite number of consensus iterations is tractable

in practice, convergence will not be fully achieved. The performance of DJPDA-CM with small number of consensus
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Algorithm 1 DJPDA-CM for target i at sensor node l at time step k

Input: Previous target estimation
{
xil,k−1|k−1 , P

i
l,k−1|k−1

}
, received measurements Zk

(1) Linearise system equation: F i
l,k−1 =

∂fi
k−1

∂xk−1

(
xil,k−1|k−1

)
(2) Prediction:

xil,k|k−1 = f ik−1

(
xil,k−1|k−1

)
P i
l,k|k−1 = F i

l,k−1P
i
l,k−1|k−1

(
F i
l,k−1

)T
+Qi

k−1

Y i
l,k|k−1 =

(
P i
l,k|k−1

)−1
, yil,k|k−1 =

(
P i
l,k|k−1

)−1
xl,k|k−1

(3) Linearise measurement equation: Hi
l,k =

∂hi
k

∂xk

(
xil,k|k−1

)
(4) Compute the measurement-related terms: Īil,k, Iil,k, iil,k

(5) Compute the initial values of consensus variables:

V i
l,k (0) = Īil,k, Gi

l,k (0) = Iil,k, vil,k (0) = iil,k + βi
l,0Iil,kx

i
l,k|k−1

(6) for m = 0, 1, · · · , L do

Broadcast information V i
l,k, Gi

l,k, vil,k to locally connected sensor nodes

Applying average consensus algorithm to V i
l,k, Gi

l,k, vil,k

(7) Measurement update:

Y i
l,k|k = Y i

l,k|k−1 +NsVl,k (L)

xil,k|k =
(
Y i
l,k|k−1 +NsGl,k (L)

)−1 (
yil,k|k−1 +Nsvl,k (L)

)
P i
l,k|k =

(
Y i
l,k|k

)−1
Output: Current estimation

{
xil,k|k , P

i
l,k|k

}

iterations will degrade significantly. To see this, define Π as the consensus matrix, whose elements are the consensus

gains πl,l′ and let πm
l,l′ ∈ Πm with Πm being the mth power of matrix Π. Further, define Nm

l as the set of sensor

nodes that the lth sensor can be connected within m hops. Then, only when l′ ∈ Nm
l , πm

l,l′ 6= 0. This means that only

when the observability of sensor set Nm
l is satisfied, the strategy of consensus on measurement is meaningful for

data fusion since no local prior knowledge is utilised for fusion in DJPDA-CM. Therefore, DJPDA-CM constrains

the posterior estimates as the prior estimates if the sensor and its neighbours cannot detect the target due to limited

field-of-view. Note that the observability condition of sensor set Nm
l can only be ensured with enough number of

iterations for sparse networks.

Remark 2. As stated in Lemma 2, the convergence of DJPDA-CM to the centralised fusion requires the condition

that the previous local estimates are converged. In real applications, however, only finite number of consensus

iterations are acceptable, which means that xil,k−1|k−1 6= xi,ck−1|k−1 and Y i
l,k−1|k−1 6= Y i,c

k−1|k−1 . Therefore, all

local estimates are auto-correlated during the fusion phase and thus DJPDA-CM suffers from the well-known
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auto-correlation problem.

C. Distributed JPDA Filter Using Consensus on Information

Apart from DJPDA-CM, the covariance intersection approach [8] suggests an alternative way to design a dis-

tributed JPDA filter, that is, consensus on information matrix and information vector. Let us rewrite the measurement

update of information JPDA filter, given in Eq. (7), as

Y i
l,k|k = Y i

l,k|k−1 + Īil,k(
Y i
l,k|k−1 + Iil,k

)
xil,k|k = yil,k|k−1 + iil,k + βi

l,0Iil,kx
i
l,k|k−1

(16)

Since covariance intersection utilises a convex combination of local estimates for data fusion, the consensus

variables in DJPDA-CI are related to information matrix and information vector. More specifically, the consensus

variables W i
l,k, Qi

l,k, qil,k are initialised as

W i
l,k (0) = Y i

l,k|k−1 + Īil,k, Qi
l,k (0) = Y i

l,k|k−1 + Iil,k, qil,k (0) = yil,k|k−1 + iil,k + βi
l,0Iil,kx

i
l,k|k−1 (17)

After receiving W i
l,k, Qi

l,k, qil,k from neighbours and performing L steps of average consensus at every time

instant, the measurement update of DJPDA-CI at time instant k is given by

Y i
l,k|k = Wl,k (L)

xil,k|k = [Ql,k (L)]
−1
ql,k (L)

(18)

Notice that DJPDA-CI with single consensus iteration, e.g., L = 1 reduces to the general covariance intersection

applied to locally connected sensors. By utilising multiple consensus iteration steps, e.g., L > 1, the information of

each sensor can be transmitted to more local sensors, thus improving the overall performance. Different from single

target tracking, the distributed covariance intersection of JPDA requires performing consensus on two different

information matrices, e.g., W i
l,k and Qi

l,k. This fact can be attributed to the intrinsic data association uncertainty

property of MTT.

The detailed implementation of the proposed DJPDA-CI algorithm is summarised in Algorithm 2. The following

lemma analyses the asymptotical performance of DJPDA-CI.

Lemma 3. Under the assumption that the sensor network is strongly connected, DJPDA-CI (18) cannot recover the

performance of the centralised JPDA (9) even with infinite number of consensus iterations at current time instant.

Proof. Using Lemma 1, the consensus variables W i
l,k, Qi

l,k, qil,k asymptotically converge to

lim
m→∞

W i
l,k (m) =

1

Ns

Ns∑
l′=1

(
Y i
l′,k|k−1 + Īil′,k

)

lim
m→∞

Qi
l,k (m) =

1

Ns

Ns∑
l′=1

(
Y i
l′,k|k−1 + Iil′,k

)

lim
m→∞

qil,k (m) =
1

Ns

Ns∑
l′=1

(
yil′,k|k−1 + iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)
(19)
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Algorithm 2 DJPDA-CI for target i at sensor node l at time step k

Input: Previous target estimation
{
xil,k−1|k−1 , P

i
l,k−1|k−1

}
, received measurements Zk

(1) Linearise system equation: F i
l,k−1 =

∂fi
k−1

∂xk−1

(
xil,k−1|k−1

)
(2) Prediction:

xil,k|k−1 = f ik−1

(
xil,k−1|k−1

)
P i
l,k|k−1 = F i

l,k−1P
i
l,k−1|k−1

(
F i
l,k−1

)T
+Qi

k−1

Y i
l,k|k−1 =

(
P i
l,k|k−1

)−1
, yil,k|k−1 =

(
P i
l,k|k−1

)−1
xl,k|k−1

(3) Linearise measurement equation: Hi
l,k =

∂hi
k

∂xk

(
xil,k|k−1

)
(4) Compute the measurement-related terms: Īil,k, Iil,k, iil,k

(5) Compute the initial values of consensus variables:

W i
l,k (0) = Y i

l,k|k−1 + Īil,k, Qi
l,k (0) = Y i

l,k|k−1 + Iil,k

qil,k (0) = yil,k|k−1 + iil,k + βi
l,0Iil,kx

i
l,k|k−1

(6) for m = 0, 1, · · · , L do

Broadcast information W i
l,k, Qi

l,k, qil,k to locally connected sensor nodes

Applying average consensus algorithm to W i
l,k, Qi

l,k, qil,k

(7) Measurement update:

Y i
l,k|k = Wl,k (L)

xil,k|k = [Ql,k (L)]
−1
ql,k (L)

P i
l,k|k =

(
Y i
l,k|k

)−1
Output: Current estimation

{
xil,k|k , P

i
l,k|k

}

Therefore, the measurement update of DJPDA-CI with infinite number of consensus iterations is determined as

Y i
l,k|k =

1

Ns

Ns∑
l′=1

(
Y i
l′,k|k−1 + Īil′,k

)

xil,k|k =

[
Ns∑
l′=1

(
Y i
l′,k|k−1 + Iil′,k

)]−1 [ Ns∑
l′=1

(
yil′,k|k−1 + iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)] (20)

Equation (20) can be reformulated as

Y i
l,k|k =

1

Ns

Ns∑
l′=1

Y i
l′,k|k−1 +

1

Ns

Ns∑
l′=1

Īil′,k

xil,k|k =

(
1

Ns

Ns∑
l′=1

Y i
l′,k|k−1 +

1

Ns

Ns∑
l′=1

Iil′,k

)−1 [
1

Ns

Ns∑
l′=1

yil′,k|k−1 +
1

Ns

Ns∑
l′=1

(
iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)] (21)

which differs from Eq. (9). Therefore, DJPDA-CI is not asymptotically optimal.
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Remark 3. From Eq. (16), we know that the term yil,k|k−1 + iil,k + βi
l,0Iil,kx

i
l,k|k−1 corresponds to local estimate

weighted by its updated information matrix. Then, it is clear that, in every consensus iteration of DJPDA-CI, the

lth sensor leverages local prior information as well as local measurements to compute a regional average, that is a

convex combination of local estimates in Nl with suitable weights πl,l′ . This is advantageous in ensuring bounded

estimation errors for any number (even with single one) of consensus steps due to the consistency property of

covariance intersection. Note that the term ’consistency’ here indicates that the actual local covariance is always

bounded by the fused local covariance. Another benefit of DJPDA-CI is that it is robust against the auto-correlation

among local estimates due to the property of covariance intersection [8]. Apart from its advantages, Lemma 3

demonstrates that DJPDA-CI is a conservative fusion algorithm as the information terms
Ns∑
l=1

Īil,k,
Ns∑
l=1

Iil,k and

Ns∑
l=1

(
iil,k + βi

l,0Iil,kx
i
k|k−1

)
are underweighted by a scalar 1/Ns, compared to the centralised solution (9).

V. DISTRIBUTED JPDA FILTER USING HYBRID FUSION STRATEGY

A. Distributed JPDA Filter Using Hybrid Consensus

Comparing DJPDA-CM and DJPDA-CI, we can observe that these two algorithms have complementary properties:

DJPDA-CM is asymptotically optimal but its performance degrades significantly when the number of consensus

iterations is small; DJPDA-CI is beneficial for ensuring the consistency of fused estimates but cannot recover the

performance of centralised JPDA. Furthermore, DJPDA-CM reveals that recovering the performance of centralised

JPDA requires the knowledge of network size, e.g., the total number of sensor nodes. In practice, an unexpected

sensor failure might happen and this changes the total number of nodes. Motivated by these observations, this paper

proposes a fully distributed JPDA filter using a hybrid consensus strategy to fully exploits the benefits of both

DJPDA-CM and DJPDA-CI without the knowledge of Ns.

Let us define the consensus variables U i
l,k, uil,k, V i

l,k, Gi
l,k, vil,k, bl,k, cl,k, which are initialised as

U i
l,k (0) = Y i

l,k|k−1 , uil,k (0) = yil,k|k−1

V i
l,k (0) = Īil,k, Gi

l,k (0) = Iil,k, vil,k (0) = iil,k + βi
l,0Iil,kx

i
l,k|k−1

bl,k (0) = 1, cl′,k (0) = 1 (∃!l′) , cl,k (0) = 0 (l 6= l′)

(22)

where bl,k, cl,k are utilised to estimate the network size and ∃!l′ denotes that there exists only one sensor node l′.

The proposed hybrid fusion scheme consists of three different types of data fusion: (1) consensus on prior

U i
l,k, uil,k; (2) consensus on measurement V i

l,k, Gi
l,k, vil,k; and (3) consensus on counting variables bl,k, cl,k. The

measurement update of DJPDA-HC at time instant k with finite L consensus iterations is given by

Y i
l,k|k = Ul,k (L) +

bl,k (L)

cl,k (L)
Vl,k (L)

xil,k|k =

[
Ul,k (L) +

bl,k (L)

cl,k (L)
Gl,k (L)

]−1(
ul,k (L) +

bl,k (L)

cl,k (L)
vl,k (L)

) (23)

Note from Eq. (22) that implementing DJPDA-HC requires selecting a special sensor node l that is initialised

as bl,k (0) = 1, cl,k (0) = 1. Obviously, different choices of this special sensor affect the overall estimation

performance. To address this problem, the random max consensus algorithm [50] is utilised here as an alternative
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way to find the index of the special node in a probabilistic manner. Specifically, define consensus variables bl,k,

cl,k, λl,k which are initialised as bl,k (0) = 1, cl,k (0) = 1, λl,k (0) ∼ U (0, 1), where U (0, 1) denotes the uniform

distribution with lower and upper bounds being, respectively, 0 and 1. This random initialisation guarantees the

diversity of the proposed algorithm: every sensor node has the possibility to become the special one. At each average

consensus iteration, λl,k is updated as the output of random max consensus algorithm, denoted as λl,max, which

is the maximum value of λl′,k, ∀l′ ∈ Nl. Then, the first time that λl,k (m+ 1) 6= λl,k (m), we subtract 1 from

cl,k (m+ 1). Since the random max consensus algorithm will eventually find the sensor node that has the largest

value of λl,k with certain m′ steps [50], we have
Ns∑
l=1

cl,k (m) = 1 when m > m′. Therefore, the total number of

sensors can be approximated by Ns = bl,k (L)/cl,k (L), with L > m′ consensus steps.

The detailed implementation of the proposed DJPDA-CI algorithm is summarised in Algorithm 3. The following

lemma analyses the asymptotical performance of DJPDA-HC.

Lemma 4. Under the assumption that the sensor network is strongly connected, DJPDA-HC (23) will asymptotically

converge to the centralised JPDA (9) at current time instant.

Proof. Applying average consensus algorithm to U i
l,k, uil,k, V i

l,k, Gi
l,k, vil,k, we have

lim
m→∞

U i
l,k (m) =

1

Ns

Ns∑
l′=1

Y i
l′,k|k−1

lim
m→∞

vil,k (m) =
1

Ns

Ns∑
l′=1

yil′,k|k−1

lim
m→∞

V i
l,k (m) =

1

Ns

Ns∑
l′=1

Īil′,k

lim
m→∞

Gi
l,k (m) =

1

Ns

Ns∑
l′=1

Iil′,k

lim
m→∞

vil,k (m) =
1

Ns

Ns∑
l′=1

(
iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)

(24)

Since the random max consensus algorithm will eventually find the special sensor node with largest value of

λl,k, average consensus algorithm guarantees

lim
m→∞

bl,k (m) =
1

Ns

Ns∑
l′=1

bl′,k (0) = 1

lim
m→∞

cl,k (m) =
1

Ns

Ns∑
l′=1

cl′,k (0) =
1

Ns

(25)

Substituting Eqs. (24) and (25) into Eq. (23) gives the proposed DJPDA-HC with infinite consensus iterations as

Y i
l,k|k =

1

Ns

Ns∑
l′=1

Y i
l′,k|k−1 +

Ns∑
l′=1

Īil′,k

xil,k|k =

(
1

Ns

Ns∑
l′=1

Y i
l′,k|k−1 +

Ns∑
l′=1

Iil′,k

)−1 [
1

Ns

Ns∑
l′=1

yil′,k|k−1 +

Ns∑
l′=1

(
iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)] (26)
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Algorithm 3 DJPDA-HC for target i at sensor node l at time step k

Input: Previous target estimation
{
xil,k−1|k−1 , P

i
l,k−1|k−1

}
, received measurements Zk

(1) Linearise system equation: F i
l,k−1 =

∂fi
k−1

∂xk−1

(
xil,k−1|k−1

)
(2) Prediction:

xil,k|k−1 = f ik−1

(
xil,k−1|k−1

)
P i
l,k|k−1 = F i

l,k−1P
i
l,k−1|k−1

(
F i
l,k−1

)T
+Qi

k−1

Y i
l,k|k−1 =

(
P i
l,k|k−1

)−1
, yil,k|k−1 =

(
P i
l,k|k−1

)−1
xl,k|k−1

(3) Linearise measurement equation: Hi
l,k =

∂hi
k

∂xk

(
xil,k|k−1

)
(4) Compute the measurement-related terms: Īil,k, Iil,k, iil,k

(5) Compute the initial values of consensus variables:

U i
l,k (0) = Y i

l,k|k−1 , uil,k (0) = yil,k|k−1

V i
l,k (0) = Īil,k, Gi

l,k (0) = Iil,k, vil,k (0) = iil,k + βi
l,0Iil,kx

i
l,k|k−1

bl,k (0) = 1, cl,k (0) = 1, λl,k (0) ∼ U (0, 1)

(6) Initialise the subtraction flag for sensor node counting algorithm: αl,k = 1

(7) for m = 0, 1, · · · , L do

Broadcast information U i
l,k, uil,k, V i

l,k, Gi
l,k, vil,k, bl,k, cl,k, λl,k to locally connected sensor nodes

Apply average consensus algorithm to U i
l,k, uil,k, V i

l,k, Gi
l,k, vl,k, bl,k, cl,k

Apply random max consensus algorithm to λl,k and update λl,k (m+ 1) as λl,max

if λl,k (m+ 1) 6= λl,k (m) and αl,k = 1 do

cl,k (m+ 1) = cl,k (m+ 1)− 1

αl,k = 0

(8) Measurement update:

Y i
l,k|k = Ul,k (L) +

bl,k (L)

cl,k (L)
Vl,k (L)

xil,k|k =

[
Ul,k (L) +

bl,k (L)

cl,k (L)
Gl,k (L)

]−1(
ul,k (L) +

bl,k (L)

cl,k (L)
vl,k (L)

)
P i
l,k|k =

(
Y i
l,k|k

)−1
Output: Current estimation

{
xil,k|k , P

i
l,k|k

}
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Since consensus on priors guarantees that all local sensors have the same priori estimates, e.g., Y i
l,k|k−1 =

1
Ns

Ns∑
l′=1

Y i
l′,k|k−1 and yil,k|k−1 = 1

Ns

Ns∑
l′=1

yil′,k|k−1 , it is immediate to see that DJPDA-HC with infinite number

of consensus iterations can recover the performance of centralised JPDA. That is, DJPDA-HC is asymptotically

optimal.

Remark 4. It is worth to point out that, with small number of iterations, bl,k (L) is very close to cl,k (L) due to

the same initialisations. For example, setting L = 1 for a sparse sensor network results in bl,k (L) ≈ cl,k (L).

Under this condition, DJPDA-HC shows similar performance as DJPDA-CI. With the increase of L, we have

bl,k (L) /cl,k (L) ≈ Ns and DJPDA-HC gradually converges to optimal centralised JPDA, similar to DJPDA-CM.

Therefore, DJPDA-HC fully exploits the benefits of both DJPDA-CM, e.g., global convergence to the optimal

centralised solution with infinite consensus iterations, and DJPDA-CI, e.g., preserving local consistency when the

consensus horizon is limited.

B. Algorithm Analysis

This subsection analyses the differences between DJPDA-CM, DJPDA-CI and DJPDA-HC theoretically. For

simplicity and convenience of analysis, the measurement updates of DJPDA-CM, DJPDA-CI and DJPDA-HC with

a single consensus iteration, e.g., L = 1, are derived from Eqs. (13), (18) and (23) as

• DJPDA-CM:

Y i
l,k|k = Y i

l,k|k−1 +Ns

∑
l′∈Nl

πl,l′ Ī
i
l′,k

xil,k|k =

(
Y i
l,k|k−1 +Ns

∑
l′∈Nl

πl,l′I
i
l′,k

)−1 [
yil,k|k−1 +Ns

∑
l′∈Nl

πl,l′
(

iil′,k + βi
l′,0Iil′,kx

i
l′,k|k−1

)] (27)

• DJPDA-CI:

Y i
l,k|k =

∑
l′∈Nl

πl,l′
(
Y i
l′,k|k−1 + Īil′,k

)

xil,k|k =

[∑
l′∈Nl

πl,l′
(
Y i
l′,k|k−1 + Iil′,k

)]−1 [∑
l′∈Nl

πl,l′
(
yil′,k|k−1 + iil′,k + βi

l′,0Iil′,kx
i
l′,k|k−1

)] (28)

• DJPDA-HC:

Y i
l,k|k =

∑
l′∈Nl

πl,l′Y
i
l′,k|k−1 +

∑
l′∈Nl

πl,l′bl′,k∑
l′∈Nl

πl,l′cl′,k

∑
l′∈Nl

πl,l′ Ī
i
l′,k

xil,k|k =

∑
l′∈Nl

πl,l′Y
i
l′,k|k−1 +

∑
l′∈Nl

πl,l′bl′,k∑
l′∈Nl

πl,l′cl′,k

∑
l′∈Nl

πl,l′I
i
l′,k


−1

×

∑
l′∈Nl

πl,l′y
i
l′,k|k−1 +

∑
l′∈Nl

πl,l′bl′,k∑
l′∈Nl

πl,l′cl′,k

∑
l′∈Nl

πl,l′
(

iil′,k + βi
l′,0Iil′,kx

i
l′,k|k−1

)

(29)

From the measurement updates of DJPDA-CM, DJPDA-CI and DJPDA-HC, we have the following important

observations:
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(1) Comparing with DJPDA-CM (27), the prior information vectors between locally connected sensor nodes of

DJPDA-CI and DJPDA-HC are weighted by their corresponding prior information matrix as
∑

l′∈Nl

πl,l′y
i
l′,k|k−1 =∑

l′∈Nl

πl,l′Y
i
l′,k|k−1x

i
l′,k|k−1 . This handles the issue of naive sensors, e.g., target is outside of the sensor’s field-of-

view, by placing less weight when receiving the information from a naive neighbour sensor. Therefore, the proposed

DJPDA-HC is helpful in ensuring the consistency of local estimates. It is clear that the implementation of DJPDA-

CM requires the global information, e.g., the total number of sensors, whereas DJPDA-HC dynamically estimate

Ns in a distributed way.

(2) Comparing with DJPDA-CI (28), the proposed DJPDA-HC remedies the drawback of measurement under-

estimation by multiplying a scaling factor
∑

l′∈Nl

πl,l′bl′,k/
∑

l′∈Nl

πl,l′cl′,k, providing the possibility of performance

recovery of optimal centralised estimation. Note that the exact total information is the summation of measurements

from all sensors, which is critical in recovering the performance of optimal centralised estimation.

(3) As the proposed DJPDA-HC algorithm requires more consensus variables for measurement update, the

computational complexity of DJPDA-HC is higher than that of DJPDA-CM and DJPDA-CI. However, consensus

on prior and consensus on measurement can be implemented in parallel to reduce the computational burden because

prior estimates are independent of current measurements.

(4) For DJPDA-CM, DJPDA-CI and DJPDA-HC, it is worth to point out that both computational complexity

and communication burden increase linearly with the increase in the number of consensus iteration steps L. For

this reason, the parameter L should be selected as a suitable trade-off between cost and estimation performance in

practical applications.

VI. NUMERICAL SIMULATIONS

This section presents a performance evaluation of the proposed DJPDA-CM, DJPDA-CM and DJPDA-HC

algorithms using Monte-Carlo simulations and experiments on real-life data. The optimal centralised JPDA filer is

used as a performance benchmark for the proposed algorithms. The performance is evaluated in terms of mean

position estimation error as well as root-mean-square position estimation error.

A. Simulation Setup

The considered scenario considers 5 targets randomly moving in a 500m×500m rectangular area. The surveillance

area is monitored by a sensor network with Ns = 30 sensors and each sensor’s field-of-view is a 200m × 200m

rectangle. Each sensor in the network has the same degree of 2, which means that each sensor is locally connected

with other two sensors. Under this condition, the communication topology of the sensor network is randomly

generated. All sensors are randomly placed inside the 500m×500m rectangle to cover the entire surveillance area.

One sample of the considered scenario is given in Fig. 2. The number of consensus iterations is set as L = 10 and
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Fig. 2. Snapshots of the considered scenario with pentagrams as sensors, colour dashed lines as network connection, and solid colour lines as

target trajectories.

the Metropolis weights [49] are leveraged for running average consensus algorithm as

πi,j =



1

max {|Ni| , |Nj |}
, if (i, j) ∈ E

1−
∑

(i,j)∈E

πi,j , if i = j

0, otherwise

(30)

where |Ni| denotes the cardinality, e.g., number of elements, of set Ni.

Each target’s state is represented by a 4-D vector, with 2-D position and 2-D velocity components. In estimation

update, the system equation is assumed to be the well-known constant velocity model f ik
(
xik
)

= F i
kx

i
k, where the

system matrix F i
k is given by

F i
k =


1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 (31)

with Ts = 1s being the sampling time. The variance of process noise of the considered constant velocity model is

determined as

Qi
k =


10 0 0 0

0 10 0 0

0 0 1 0

0 0 0 1

 (32)

For each sensor, if the target is located inside its field-of-view, the target-generated measurements are generated

with a detection probability PD = 0.9. Each sensor collects range as well as bearing measurements at regular time
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instants tk = kTs, k ∈ {1, 2, · · · , 40}, as

hik
(
xik
)

=

 √(xik (1)− xls
)2

+
(
xik (2)− yls

)2
arctan

(
xi
k(2)−y

l
s

xi
k(1)−xl

s

)
 (33)

where
(
xls, y

l
s

)
denotes the position of the lth sensor. The measurement noise is subject to a Gaussian white noise

as vk ∼ N
(
·; 0, Ri

k

)
with Ri

k = diag
(
σ2
r , σ

2
a

)
, σr = 3m, σa = 0.5 (π/180) rad. The clutter is assumed to be

uniformly distributed in the surveillance region with its number being Poisson with 2 average returns per sensor at

each scan. Gating is performed with a threshold such that the gating probability is PG = 0.999.

For initialisation, the covariance matrix of the ith target at sensor node l is chosen as P i
l,0|−1 = diag (100, 100, 10, 10).

The initial state estimates are generated from a Gaussian distribution around the true target state with the covariance

P i
l,0|−1 . Note that the starting point of each target is randomly generated inside the surveillance region at every

Monte-Carlo run.

In order to evaluate the performance of the proposed algorithms with different conditions, one parameter is varied

while others are set as their aforementioned default values. The simulations are obtained over 1000 Monte-Carlo

runs for each parameter setting.

B. Performance Metric

Let xi,jl,k|k denote the estimated state of the ith target at sensor node l at time instant k at the jth Monte Carlo

run and xi,jk be the true state of the ith target at time instant k at the jth Monte Carlo run. The mean error (ME)

of position estimation and root-mean-square error (RMSE) of position estimation at time instant k, averaged over

M Monte-Carlo runs, Ns sensors and Nk targets, are defined as

MEpos
k =

1

MNsNk

Nk∑
i=1

Ns∑
l=1

M∑
j=1

∥∥∥pi,jl,k|k − pi,jk ∥∥∥
RMSEpos

k =

 1

MNsNk

Nk∑
i=1

Ns∑
l=1

M∑
j=1

∥∥∥pi,jl,k|k − pi,jk ∥∥∥2
 1

2
(34)

where pi,jk = xi,jk (1 : 2) and pi,jl,k|k = xi,jl,k|k (1 : 2) are true and estimated target positions.

For performance evaluation of the proposed algorithms, the time averaged ME and RMSE are utilised. These

two metrics are computed as

MEpos
avg =

1

T

T∑
k=1

MEpos
k

RMSEpos
avg =

1

T

T∑
k=1

RMSEpos
k

(35)

where T = 40 is the total number of time instants during the tracking period.

C. Performance of Proposed Algorithms

In consensus-based distributed estimation, information transmission via multiple communications among locally

connected sensors are required and the performance is highly-related to the number of iteration steps L. In order
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Fig. 3. Average target position estimation ME and RMSE versus number of consensus iterations.

to investigate the effect of the parameter L on filtering performance, Monte-Carlo simulations are performed with

respect to different iterations L = 1, 2, · · · , 20. The simulation results of average target position estimation ME and

RMSE are depicted in Fig. 3. From this figure, it can be noted that the performance of DJPDA-CM, DJPDA-CI

and DJPDA-HC improves with the increase of iteration step L. The average MEs and RMSEs of DJPDA-CM,

DJPDA-CI and DJPDA-HC all converge to some certain constants when the consensus iteration step becomes large

enough. Note that DJPDA-CI generates more accurate estimation, compared to DJPDA-CM, with small number of

consensus steps. This fact can be attributed to that DJPDA-CI utilises a convex combination of the prior estimates

while DJPDA-CM only leverages the novel information for fusion. Fig. 3 also reveals that both DJPDA-CM and

DJPDA-HC outperform DJPDA-CI with enough number of consensus iterations and guarantee a global convergence

to recover the performance of the optimal centralised JPDA filter. This confirms the theoretical analysis shown in Sec.

IV. With finite number of consensus iterations, the proposed DJPDA-HC provides better estimation performance,

compared to both DJPDA-CM and DJPDA-CI, in terms of average ME and RMSE, demonstrating the advantages

of DJPDA-HC algorithm. Notice that improvement in estimation can be obtained by increasing the number of

consensus steps L. However, there is not much performance difference for the proposed DJPDA-HC with enough

consensus steps, e.g., L ≥ 10 in the considered setup. Typically, the communication rate is much faster than the

sampling rate [51], meaning that certain consensus steps between two consecutive time instants can be ensured to

guarantee the fusion performance.

Now, let us investigate the effect of the total number of sensors on tracking performance. Fig. 4 presents the

Monte-Carlo simulation results of average target position estimation ME and RMSE with different number of

sensors Ns = 22, 24, · · · , 40. Note that all sensors are placed randomly inside the surveillance area. Therefore,

if one sensor is close to another, their range and angle observations share similar qualities. Intuitively, the total

amount of information increases with more sensors, which should generate improved performance. However, more

sensors with the same graph degree inevitably requires larger number of consensus iterations for convergence. Due
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Fig. 4. Average target position estimation ME and RMSE versus number of sensors.

to these contradictory facts, the performance of proposed algorithms do not show much difference for small number

of sensors, e.g., Ns ≤ 30. Compared to DJPDA-CI and DJPDA-HC, DJPDA-CM is more sensitive to the variation

of total sensor number because this algorithm only utilises the available measurement information. It should be

pointed out that the centralised JPDA filter also shows performance degradation with the increase of network size.

This fact can be attributed to the increasing of the possibility of track-to-track association failure.

In network-based sensing and tracking, it is clear that the sensor’s available field-of-view would affect the

overall estimation performance: if the sensor’s field-of-view is too narrow, then it cannot detect the target of

interest. Fig. 5 compares the performance of different tracking algorithms with respect to different sensing range

50m, 100m, · · · , 400m. Here, the sensor’s field-of-view is defined as a rectangle, depending on the sensing range.

For example, if the sensing range is 200m, the sensor’s field-of-view is a 200m × 200m rectangle. From Fig. 5,

it can be observed that, with narrow field-of-view, e.g., sensing range ≤ 100m, both DJPDA-CI and DJPDA-HC

outperform DJPDA-CM, demonstrating that fusing the prior information is helpful to preserve the consistency of

local estimates. Note that the centralised JPDA filter also shows apparent performance degradation with narrow

sensor’s field-of-view. The reason is that most sensor nodes miss detect the targets due to narrow field-of-view.

Therefore, only small amount of information can be utilised in the fusion centre for data integration. With longer

sensing range, the performance of DJPDA-CM and DJPDA-HC improves significantly and converges to the optimal

centralised JPDA since more information is available for data integration. With enough sensing range, e.g., ≥ 250m,

the performance of all tested distributed JPDA filters converges to certain steady-state performance. However, it is

clear that DJPDA-CI is conservative and cannot converge to optimal centralised fusion.

In MTT, the number of targets determines the complexity or size of the problem and greatly affects the tracking

performance since data association becomes more challenging with the increase of problem complexity. Fig. 6

presents the Monte-Carlo simulation results of average target position estimation ME and RMSE with different

number of targets Nk = 3, 4, . . . , 8. Unsurprisingly, the performance of all tested tracking algorithms degrades with
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Fig. 5. Average target position estimation ME and RMSE versus sensing range.
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Fig. 6. Average target position estimation ME and RMSE versus number of targets.

more targets. The reason is that the chance of data association (measurement-to-track as well as track-to-track)

failure rises with the increase in the number of targets, which has an adverse effect in JPDA. Interestingly, the

proposed DJPDA-HC exhibits very close performance as centralised JPDA and outperforms both DJPDA-CM and

DJPDA-CI even with large number of targets.

High clutter rate is a typical characteristics of low-cost sensors, which would have adverse effect on the tracking

performance. To investigate the robustness of different algorithms against the variation of clutter rate, Fig. 7 presents

the Monte-Carlo simulation results of average target position estimation ME and RMSE with different number of

clutters per sensor per frame NFA = 1, 1.5, · · · , 3.5. Intuitively, the increase of clutter rate will give rise to high

possibility of data association failure (measurement-to-track as well as track-to-track), thus the degradation in

tracking performance. This can be clearly observed from Fig. 7 for all tested algorithms. This figure also reveals

January 10, 2019 DRAFT



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 22

1 1.5 2 2.5 3 3.5

Average Number of Clutters per Sensor

10

20

30

40

50

60

70

80
M

ea
n 

E
rr

or
 (

m
)

Centralised
DJPDA-CI
DJPDA-CM
DJPDA-HC

(a) Average ME

1 1.5 2 2.5 3 3.5

Average Number of Clutters per Sensor

20

30

40

50

60

70

80

90

100

110

R
oo

t-
M

ea
n-

S
qu

ar
e 

E
rr

or
 (

m
)

Centralised
DJPDA-CI
DJPDA-CM
DJPDA-HC

(b) Average RMSE

Fig. 7. Average target position estimation ME and RMSE versus number of clutters per sensor.

that DJPDA-CM is more sensitive to other algorithms. Furthermore, the proposed DJPDA-HC algorithm is strongly

robust even to a high clutter rate and shows very close performance as the centralised JPDA filter.

D. Experiments on Real-Life Data

To further validate the effectiveness of the proposed method, we evaluate it with publicly available multiple target

tracking datasets. We choose the popular EPFL laboratory video sequences [52] for pedestrian tracking. The EPFL

laboratory dataset, filmed from four different cameras, offers four pedestrians walking around in a room. Figure 8

presents the snapshots from these four different cameras.

In all experiments, the pedestrian position measurements are obtained by running the state-of-the-art discrimina-

tively trained part-based model (DTPM) detector [53]. The detections are obtained on a post-processing basis for

all collected data to allow for fair comparisons with exactly the same inputs, i.e., the DTPM detector is applied

to all videos in an offline fashion to get the measurements of all frames. Each detection is represented by a

bounding box with its centroid, length and width as the measurement information of each detected target. For

valid fusion, all DJPDA algorithms are performed using a ground-based inertial coordinate. Under this condition,

the nonlinear measurement model hil,k
(
xik
)

of the lth camera is a function of the camera calibration parameters

[52]. The tracking performance are evaluated by comparing with the annotated ground truth, provided by [54]. The

mean position error, averaged over four cameras and four persons, obtained from three different DJPDA algorithms

are depicted in Fig. 9. It can be noted from this figure that both DJPDA-CM and DJPDA-HC asymptotically

converge to the optimal centralised solution. Although DJPDA-CI has better tracking accuracy than DJPDA-CM

with small number of consensus iterations, it cannot recover the performance of centralised fusion. Furthermore,

the experimental study also reveals that the proposed DJPDA-HC outperforms both DJPDA-CI and DJPDA-CM in

terms of tracking accuracy. These results clearly validate the theoretical study shown in previous sections.
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Fig. 8. Snapshots of EPFL laboratory dataset from four different cameras.
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Fig. 9. Mean position error averaged over four cameras and four persons.

VII. CONCLUSIONS

The problem of distributed multiple targets tracking over a sensor network is investigated in this paper. The

proposed algorithms utilise the baseline JPDA filter in conjunction with different fusion strategies, e.g., CM, CI

and HC, via the average consensus algorithm. A distributed node counting algorithm is also proposed to support

the implementation of DJPDA-HC. Theoretical analysis reveals that the proposed DJPDA-HC filter asymptotically

converges to the optimal centralised JPDA and also provides the benefits of preserving the consistency of local
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estimates by a novel hybrid fusion strategy. Extensive simulations demonstrate that the proposed DJPDA-HC

outperforms other algorithms under various different conditions. Future work will consider practical issues, such as

time delay and packet loss, in the distributed JPDA.

APPENDIX A

INFORMATION FORM JOINT PROBABILISTIC DATA ASSOCIATION FILTER

Using matrix inversion lemma, the gain of JPDA filter Ki
k can be obtained as

Ki
k = P i

k|k−1
(
Hi

k

)T (
Hi

kP
i
k|k−1

(
Hi

k

)T
+Ri

k

)−1
= P i

k|k−1
(
Hi

k

)T ((
Ri

k

)−1 − (Ri
k

)−1
Hi

k

[(
P i
k|k−1

)−1
+
(
Hi

k

)T (
Ri

k

)−1
Hi

k

]−1 (
Hi

k

)T (
Ri

k

)−1)

=

[(
P i
k|k−1

)−1
+
(
Hi

k

)T (
Ri

k

)−1
Hi

k

]−1 (
Hi

k

)T (
Ri

k

)−1
(36)

Substituting Eq. (36) in Eq. (5) gives the state estimation as

xik|k = xik|k−1 +

[(
P i
k|k−1

)−1
+
(
Hi

k

)T (
Ri

k

)−1
Hi

k

]−1 (
Hi

k

)T (
Ri

k

)−1
z̃ik

= xik|k−1 +

[(
P i
k|k−1

)−1
+
(
Hi

k

)T (
Ri

k

)−1
Hi

k

]−1
×
(
Hi

k

)T (
Ri

k

)−1Mk∑
j=1

βi
jz

i
j,k −

(
1− βi

0

)
Hi

kx
i
k|k−1


= xik|k−1 +

(
Y i
k|k−1 + Iik

)−1 [
iik −

(
1− βi

0

)
Iikx

i
k|k−1

]
=
(
Y i
k|k−1 + Iik

)−1 (
yik|k−1 + iik + βi

0Iikx
i
k|k−1

)

(37)

where the information-related terms are defined as

Y i
k|k−1 =

(
P i
k|k−1

)−1
, yik|k−1 =

(
P i
k|k−1

)−1
xik|k−1

Iik =
(
Hi

k

)T (
Ri

k

)−1
Hi

k, iik =
(
Hi

k

)T (
Ri

k

)−1 Mk∑
j=1

βi
jz

i
j,k

(38)

Based on the matrix inversion lemma, the update of the information matrix Y i
k|k−1 is derived as

Y i
k|k =

{
P i
k|k−1 −K

i
k

(
1− βi

0

) (
Ki

k

)T
+Ki

kP̄
i
k

(
Ki

k

)T}−1
=
{
P i
k|k−1 −K

i
k

[(
1− βi

0

)
Si
k − P̄ i

k

] (
Ki

k

)T}−1
= Y i

k|k−1 + Īik

(39)

where the information matrix contribution Īik is given by

Īik = Y i
k|k−1K

i
k

{[(
1− βi

0

)
Si
k − P̄ i

k

]−1 − (Ki
k

)T
Y i
k|k−1K

i
k

}(
Ki

k

)T
Y i
k|k−1 (40)
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