100 research outputs found

    Porcine Interferon Complex and Co-Evolution with Increasing Viral Pressure after Domestication

    Get PDF
    Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/β subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/β subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases

    Molecular evolution of the porcine type I interferon family: subtype-specific expression and antiviral activity

    Get PDF
    Type I interferons (IFNs), key antiviral cytokines, evolve to adapt with ever-changing viral threats during vertebrate speciation. Due to novel pathogenic pressure associated with Suidae speciation and domestication, porcine IFNs evolutionarily engender both molecular and functional diversification, which have not been well addressed in pigs, an important livestock species and animal model for biomedical sciences. Annotation of current swine genome assembly Sscrofa10.2 reveals 57 functional genes and 16 pseudogenes of type I IFNs. Subfamilies of multiple IFNA, IFNW and porcine-specific IFND genes are separated into four clusters with ~60 kb intervals within the IFNB/IFNE bordered region in SSC1, and each cluster contains mingled subtypes of IFNA, IFNW and IFND. Further curation of the 57 functional IFN genes indicates that they include 18 potential artifactual duplicates. We performed phylogenetic construction as well as analyses of gene duplication/conversion and natural selection and showed that porcine type I IFN genes have been undergoing active diversification through both gene duplication and conversion. Extensive analyses of the non-coding sequences proximal to all IFN coding regions identified several genomic repetitive elements significantly associated with different IFN subtypes. Family-wide studies further revealed their molecular diversity with respect to differential expression and restrictive activity on the resurgence of a porcine endogenous retrovirus. Based on predicted 3-D structures of representative animal IFNs and inferred activity, we categorized the general functional propensity underlying the structure-activity relationship. Evidence indicates gene expansion of porcine type I IFNs. Genomic repetitive elements that associated with IFN subtypes may serve as molecular signatures of respective IFN subtypes and genomic mechanisms to mediate IFN gene evolution and expression. In summary, the porcine type I IFN profile has been phylogenetically defined family-wide and linked to diverse expression and antiviral activity, which is important information for further biological studies across the porcine type I IFN family

    Dysregulated Interferon Response Underlying Severe COVID-19

    Get PDF
    Innate immune interferons (IFNs), including type I and III IFNs, constitute critical antiviral mechanisms. Recent studies reveal that IFN dysregulation is key to determine COVID-19 pathogenesis. Effective IFN stimulation or prophylactic administration of IFNs at the early stage prior to severe COVID-19 may elicit an autonomous antiviral state, restrict the virus infection, and prevent COVID-19 progression. Inborn genetic flaws and autoreactive antibodies that block IFN response have been significantly associated with about 14% of patients with life-threatening COVID-19 pneumonia. In most severe COVID-19 patients without genetic errors in IFN-relevant gene loci, IFN dysregulation is progressively worsened and associated with the situation of pro-inflammation and immunopathy, which is prone to autoimmunity. In addition, the high correlation of severe COVID-19 with seniority, males, and individuals with pre-existing comorbidities will be plausibly explained by the coincidence of IFN aberrance in these situations. Collectively, current studies call for a better understanding of the IFN response regarding the spatiotemporal determination and subtype-specificity against SARS-CoV-2 infections, which are warranted to devise IFN-related prophylactics and therapies

    Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates

    Get PDF
    The current novel coronavirus disease (COVID-19) has spread globally within a matter of months. The virus establishes a success in balancing its deadliness and contagiousness, and causes substantial differences in susceptibility and disease progression in people of different ages, genders and pre-existing comorbidities. These host factors are subjected to epigenetic regulation; therefore, relevant analyses on some key genes underlying COVID-19 pathogenesis were performed to longitudinally decipher their epigenetic correlation to COVID-19 susceptibility. The genes of host angiotensin-converting enzyme 2 (ACE2, as the major virus receptor) and interleukin (IL)-6 (a key immuno-pathological factor triggering cytokine storm) were shown to evince active epigenetic evolution via histone modification and cis/trans-factors interaction across different vertebrate species. Extensive analyses revealed that ACE2 ad IL-6 genes are among a subset of non-canonical interferon-stimulated genes (non-ISGs), which have been designated for their unconventional responses to interferons (IFNs) and inflammatory stimuli through an epigenetic cascade. Furthermore, significantly higher positive histone modification markers and position weight matrix (PWM) scores of key cis-elements corresponding to inflammatory and IFN signaling, were discovered in both ACE2 and IL6 gene promoters across representative COVID-19-susceptible species compared to unsusceptible ones. The findings characterize ACE2 and IL-6 genes as non-ISGs that respond differently to inflammatory and IFN signaling from the canonical ISGs. The epigenetic properties ACE2 and IL-6 genes may serve as biomarkers to longitudinally predict COVID-19 susceptibility in vertebrates and partially explain COVID-19 inequality in people of different subgroups

    Antiviral regulation in porcine monocytic cells at different activation states

    Get PDF
    Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity

    Porcine type I interferons: polymorphic sequences and activity against PRRSV

    Get PDF
    Background: Type I interferons (IFN) are a heterogeneous group of cytokines central to innate and adaptive antiviral immune responses. We have recently reported that porcine type I IFNs comprise at least 39 functional genes with diverse antiviral activity against porcine reproductive and respiratory syndrome virus (PRRSV). Here we report that potential cytokine polymorphisms exist in several genes of porcine type I IFNs. Results: We have detected more than 100 potential polymorphic mutations, which include nucleotide substitutions and deletions, within the coding regions of porcine type I IFNs. Approximately 50% of the nucleotide changes were mutations that resulted in non-conserved amino acid substitution, as well as deletions that produced frame shifts in the open reading frames (ORFs). We have identified more than 20 polymorphic mutants that showed alterations in anti-PRRSV and anti-vesicular stomatitis virus (VSV) activity in vitro. In particular, some mutations in IFN-α2, IFN-α3, IFN-α8, IFN-α12 and IFN-ω5 significantly altered the antiviral activity of expressed proteins in comparison to the wild-type or variant with more similarity to the wild-type. Conclusions: Multiple polymorphic isoforms potentially exist within subtypes of the porcine type I IFN family. Polymorphic mutations are more common in multiple-member subtypes than single-member subtypes, and most are found within the IFN-α subclass. Some polymorphic isoforms have altered amino acid composition and shifted ORFs, which show significantly different antiviral activity in vitro

    Immunogenetic Association Underlying Severe COVID-19

    Get PDF
    SARS-CoV2 has caused the current pandemic of new coronavirus disease 2019 (COVID-19) worldwide. Clinical outcomes of COVID-19 illness range broadly from asymptotic and mild to a life-threatening situation. This casts uncertainties for defining host determinants underlying the disease severity. Recent genetic analyses based on extensive clinical sample cohorts using genome-wide association studies (GWAS) and high throughput sequencing curation revealed genetic errors and gene loci associated with about 20% of life-threatening COVID-19 cases. Significantly, most of these critical genetic loci are enriched in two immune signaling pathways, i.e., interferon-mediated antiviral signaling and chemokine-mediated/inflammatory signaling. In line with these genetic profiling studies, the broad spectrum of COVID-19 illness could be explained by immuno-pathological regulation of these critical immunogenetic pathways through various epigenetic mechanisms, which further interconnect to other vital components such as those in the renin–angiotensin–aldosterone system (RAAS) because of its direct interaction with the virus causing COVID-19. Together, key genes unraveled by genetic profiling may provide targets for precisely early risk diagnosis and prophylactic design to relieve severe COVID-19. The confounding epigenetic mechanisms may be key to understanding the clinical broadness of COVID-19 illness

    Xenopus Interferon Complex: Inscribing the Amphibiotic Adaption and Species-Specific Pathogenic Pressure in Vertebrate Evolution?

    Get PDF
    Several recent studies have revealed previously unknown complexity of the amphibian interferon (IFN) system. Being unique in vertebrate animals, amphibians not only conserve and multiply the fish-like intron-containing IFN genes, but also rapidly evolve amniote-like intronless IFN genes in each tested species. We postulate that the amphibian IFN system confers an essential model to study vertebrate immune evolution in molecular and functional diversity to cope with unprecedented pathophysiological requirement during terrestrial adaption. Studies so far have ascribed a potential role of these IFNs in immune regulation against intracellular pathogens, particularly viruses; however, many knowledge gaps remain elusive. Based on recent reports about IFN’s multifunctional properties in regulation of animal physiological and defense responses, we interpret that amphibian IFNs may evolve novel function pertinent to their superior molecular diversity. Such new function revealed by the emerging studies about antifungal and developmental regulation of amphibian IFNs will certainly promote our understanding of immune evolution in vertebrates to address current pathogenic threats causing amphibian decline

    Integrate structural analysis, isoform diversity, and interferon-inductive propensity of ACE2 to predict SARS-CoV2 susceptibility in vertebrates

    Get PDF
    The current new coronavirus disease (COVID-19) has caused globally over 0.4/6 million confirmed deaths/infected cases across more than 200 countries. As the etiological coronavirus (a.k.a. SARS-CoV2) may putatively have a bat origin, our understanding about its intermediate reservoir between bats and humans, especially its tropism in wild and domestic animals are mostly unknown. This constitutes major concerns in public health for the current pandemics and potential zoonosis. Previous reports using structural analysis of the viral spike protein (S) binding its cell receptor of angiotensin-converting enzyme 2 (ACE2), indicate a broad potential of SARS-CoV2 susceptibility in wild and particularly domestic animals. Through integration of key immunogenetic factors, including the existence of S-binding-void ACE2 isoforms and the disparity of ACE2 expression upon early innate immune response, we further refine the SARS-CoV2 susceptibility prediction to fit recent experimental validation. In addition to showing a broad susceptibility potential across mammalian species based on structural analysis, our results also reveal that domestic animals including dogs, pigs, cattle and goats may evolve ACE2-related immunogenetic diversity to restrict SARS-CoV2 infections. Thus, we propose that domestic animals may be unlikely to play a role as amplifying hosts unless the virus has further species-specific adaptation. Findings may relieve relevant public concerns regarding COVID-19-like risk in domestic animals, highlight virus-host coevolution, and evoke disease intervention through targeting ACE2 molecular diversity and interferon optimization

    Viral Infections and Interferons in the Development of Obesity

    Get PDF
    Obesity is now a prevalent disease worldwide and has a multi-factorial etiology. Several viruses or virus-like agents including members of adenoviridae, herpesviridae, slow virus (prion), and hepatitides, have been associated with obesity; meanwhile obese patients are shown to be more susceptible to viral infections such as during influenza and dengue epidemics. We examined the co-factorial role of viral infections, particularly of the persistent cases, in synergy with high-fat diet in induction of obesity. Antiviral interferons (IFNs), as key immune regulators against viral infections and in autoimmunity, emerge to be a pivotal player in the regulation of adipogenesis. In this review, we examine the recent evidence indicating that gut microbiota uphold intrinsic IFN signaling, which is extensively involved in the regulation of lipid metabolism. However, the prolonged IFN responses during persistent viral infections and obesogenesis comprise reciprocal causality between virus susceptibility and obesity. Furthermore, some IFN subtypes have shown therapeutic potency in their anti-inflammation and anti-obesity activity
    corecore