7 research outputs found

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Promising advancement in fermentative succinic acid production by yeast hosts

    Full text link
    As a platform chemical with various applications, succinic acid (SA) is currently produced by petrochemical processing from oil-derived substrates such as maleic acid. In order to replace the environmental unsustainable hydrocarbon economy with a renewable environmentally sound carbohydrate economy, bio-based SA production process has been developed during the past two decades. In this review, recent advances in the valorization of solid organic wastes including mixed food waste, agricultural waste and textile waste for efficient, green and sustainable SA production have been reviewed. Firstly, the application, market and key global players of bio-SA are summarized. Then achievements in SA production by several promising yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica are detailed, followed by calculation and comparison of SA production costs between oil-based substrates and raw materials. Lastly, challenges in engineered microorganisms and fermentation processes are presented together with perspectives on the development of robust yeast SA producers via genome-scale metabolic optimization and application of low-cost raw materials as fermentation substrates. This review provides valuable insights for identifying useful directions for future bio-SA production improvement. © 2020 Elsevier B.V

    Characterization of fine particulate black carbon in Guangzhou, a megacity of South China

    No full text
    Continuous measurement of fine particulate black carbon (BC) was conducted at an urban site of Guangzhou in South China from December 2007 to December 2008. The daily average BC concentrations ranged from 0.6 to 20.5 mu g m(-3), with an average value of 4.7 mu g m(-3), which was substantially higher than those observed in the urban areas of other developed countries. Diurnal fluctuations of BC were marked with two peaks, one in the morning rush hour (08:00 LT) and the other in the late evening hour (21:00-22:00 LT), while the lowest BC concentrations were observed in the afternoon. Ambient BC concentrations displayed significant seasonal and diurnal variations with higher values in winter and spring, followed by lower concentrations during autumn and summer. Wind speed, wind direction and temperature were important meteorological factors that affected BC concentrations. A clearly negative correlation (r=-0.50, p&lt;0.01) between BC concentrations and wind speed was found during the study period. A specific investigation was conducted to determine the relationship between optical BC and thermal-optical-reflectance elemental carbon (TOR EC) in distinct seasons. Although significant correlations between BC and EC were obtained (r&gt;0.92, p&lt;0.01), the regression slopes (Delta BC/Delta EC) slightly deviated from each other with values of 0.79, 1.18, and 0.81 in winter, spring and summer, respectively, possibly due to the distinct mixing states and source variations in different seasons. The calculated experimental attenuation coefficient showed a higher value (19.3 m(2) g(-1)) in Guangzhou than the one recommended for typical Aethalometer measurements.</p

    Characteristics and applications of size-segregated biomass burningtracers in China's Pearl River Delta region

    No full text
    Biomass burning activities in China are ubiquitous and the resulting smoke emissions may pose considerable threats to human health and the environment. In the present study, size-segregated biomass burning tracers, including anhydrosugars (levoglucosan (LG) and mannosan (MN)) and nonsea-salt potassium (nss-K&thorn;), were determined at an urban and a suburban site in the Pearl River Delta (PRD) region. The size distributions of biomass burning tracers were generally characterized by a unimodal pattern peaking in the particle size range of 0.44e1.0 mm, except for MN during the wet season, for which a bimodal pattern (one in fine and one in coarse mode) was observed. These observed biomass burning tracers in the PRD region shifted towards larger particle sizes compared to the typical size distributions of fresh biomass smoke particles. Elevated biomass burning tracers were observed during the dry season when biomass burning activities were intensive and meteorological conditions favored the transport of biomass smoke particles from the rural areas in the PRD and neighboring areas to the sampling sites. The fine mode biomass burning tracers significantly correlated with each other, confirming their common sources. Rather high DLG/DMN ratios were observed at both sites, indicating limited influence from softwood combustion. High Dnss-K&thorn;/DLG ratios further suggested that biomass burning aerosols in the PRD were predominately associated with burning of crop residues. Using a simplified receptor-oriented approach with an emission factor of 0.075 (LG/TC) obtained from several chamber studies, average contributions of biomass burning emissions to total carbon in fine particles were estimated to be 23% and 16% at the urban and suburban site, respectively, during the dry season. In contrast, the relative contributions to total carbon were lower than 8% at both sites during the wet season.</p

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    No full text
    corecore