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1. Introduction  

Biofuels have recently gained much attention, mainly as alternative fuels for applications in 
energy generation and transportation. The utilization of biofuels in such controlled 
combustion processes has the great benefit of not further depleting the limited resources of 
fossil fuels, yet it is associated with emissions of greenhouse gases and smoke particles 
similar to traditional combustion processes, i.e., those of fossil fuels. On the other hand, a 
vast amount of biofuels is subject to combustion in small-scale processes, such as for heating 
and cooking in residential dwellings, as well as in agricultural operations, such as for crop 
residue removal and land clearing. In addition, large amounts of biomass are consumed 
annually during forest and savanna fires in many parts of the world. These types of burning 
processes are typically uncontrolled and unregulated. Consequently, the emissions from 
such processes may be substantially larger compared to industrial-type operations. Aside 
from direct effects on human health, especially due to a sizeable fraction of the smoke 
emissions remaining inside residential homes, the smoke particles and gases released from 
uncontrolled biofuel combustion impose significant effects on regional and global climate. 
Estimates have shown the majority of carbonaceous airborne particulate matter to be 
derived from the combustion of biofuels and biomass. The resulting “clouds” of 
carbonaceous aerosol particles nowadays span vast areas across the Globe. Aside from the 
negative health impacts and influence on global climate, these smoke particles affect 
biogeochemical cycles and regional air quality, which is also associated with severe 
economic impacts.  
Whereas emissions from industrial operations and traffic have been fairly well 
characterized, smoke released during combustion of biofuels is poorly understood in terms 
of its chemical composition and physical properties. Biofuel combustion generates smoke 
particles which are predominantly of carbonaceous nature, consisting of an organic carbon 
(OC) and an elemental carbon (EC) fraction, the latter of which is at times mistakenly 
referred to as black carbon (BC) or soot. While the OC and EC fractions can be quantified by 
various methods, there is a large gap in our knowledge regarding the specific composition 
of OC in biofuel smoke particles. In fact, OC is composed of thousands of individual organic 
compounds with a wide range of chemical and physical properties. Recent advances in the 
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speciation of the OC fraction in smoke aerosol generated from biofuel combustion provide 
some new insights into the chemical and physical characteristics of such particles. For 
instance, it is now understood that biomass smoke particles contain a sizeable portion of 
higher molecular weight substances as well as polar organic compounds. However, much 
effort is still needed to better characterize emissions from biofuel combustion, which has to 
include source and near-source emissions measurements as well as better characterization of 
ambient aerosol influenced by biofuel/biomass smoke.  
This chapter will give an overview of the current state of knowledge regarding the chemical 
and physical properties of smoke aerosol released from biofuel combustion, by providing 
selected key references, and point out future research needs and directions. 

2. Biofuel usage in Asia and China  

In Asia, biofuel emissions are very substantial and have significant influence on regional air 
quality. Streets et al. (2003) estimated that the major biofuel emissions in Asia arose from the 
combustion of woods, animal waste (dung) and agricultural waste, and the high biofuel 
emission regions were mainly located in central and East China, Southeast Asia, and South 
Asia by spatial and rural population allocation. The average annual biofuel consumption in 
Asia was estimated to be 730 Tg from both anthropogenic and natural sources, with 45, 34 
and 20% accounted for by forest burning, crop residue open burning and 
grassland/savanna burning, respectively. When allocated to countries, it was found that 
China contributed 25%, India 18%, Indonesia 13%, and Myanmar 8% of the total 
consumption. Regionally, forest fires in Southeast Asia dominated. 
Tropical Southeast Asia is an active biofuel emission region as a result of increasing 
deforestation and agricultural activities (Stott, 1988; Christopher and Kimberly, 1996; Dwyer 
et al., 1998), including East-Central India and the region comprised by Thailand, Burma, 
Laos, Cambodia and Vietnam (Christopher and Kimberly, 1996). March and April constitute 
the intensive burning season in this region (Stott, 1988). The intensive fire activity resulting 
from burning of agricultural waste and shifting cultivation is clearly reflected by the fire hot 
spots derived from the Along Track Scanning Radiometer (ATSR) on board of a European 
Space Agency (ESA) satellite (Figure 1); these fires usually reach their full strength in March 
or April (Figure 2). The amount of biofuels burned in all tropical Asia is very large, which 
was estimated at about one-half of the amount burned in tropical America, and about one-
third of the amount burned in tropical Africa (Liu et al., 1999).  
China has a large rural population whose major energy source has been biofuels (crop 
residues, fuel woods, etc.) for the last several decades. It is not uncommon to see burning of 
wood and crop residues in kitchens and stoves in the countryside, and even in the 
surrounding regions of wealthy areas, such as Guangdong Province and Beijing. In 
addition, biofuel burning is often used as a convenient way of clearing vegetated areas in 
China (Figure 3). Based on the crop output data from 2001 to 2005, Yang et al. (2008) 
estimated that the generated annual average amount of crop residue was 3.04×106 t, and 
about 43% of this was burned in the field. According to the stastics of Guangdong Province, 
the annual consumption of fuel wood in Guangdong Province is about 5.13-6.00 Tg, and 
30%-40% of the produced straws is used as biofuel. PM2.5 mass concentrations derived from 
rice straw combustion can reach as much as 3557 Tg. There have been several literature 
reports of biofuel/biomass burning contributions to ambient air in China (Zhang et al., 2008; 
Zhang et al., 2010; Sang et al., 2011).  
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Fig. 1. The geographical distribution of fire hot spots in the tropics derived from ATSR data 

 

 

Fig. 2. Monthly variability of fire hot spots in the southeast Asian subcontinent  
(30 °N, 90 °E - 5 °N, 115 °E) 
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Fig. 3. Photos showing storage of fuel wood in a typical household in a village of south 
China (left) and burning of crop residues (right) in a sugarcane field of western Guangdong 
Province 

3. Combustion process  

Biomass/biofuel burning can be divided into four types: forest fires, savanna or grassland 
fires, burning of crop residues in the field and domestic biofuel combustion. Here we refer 
to biofuels mainly in respect to biomass burned in domestic stoves and ovens for cooking 
and heat generation, in contrast to biomass that is openly burned on a larger scale, such as in 
wildland fires. The main structural components of biomass/biofuels are the biopolymers 
cellulose (40-50%), hemicelluloses (20-30%) and lignins (15-35%) (Sergejewa, 1959; Petterson, 
1984). Cellulose, a linear polymer composed of 7000-12000 D-glucose monomers, is the 
elementary fibrils and could form larger fiber structures (Sergejewa, 1959). Hemicelluloses, 
consisting of only about 100-200 sugar monomers, are mixtures of polysaccharides derived 
from glucose, mannose, galactose, xylose, arabinose, 4-O-methylglucuronic acid (4-OMGA), 
and galacturonic acid (Sergejewa, 1959; Pharham and Gray, 1984) and are less structured 
than cellulose molecules. The biofuel combustion processes could be summarized as the 
heating, flaming and smoldering phases. At the heating stage, biofuels are being 
hydrolyzed, oxidized, dehydrated and pyrolyzed to form tarry substances, volatiles and 
highly reactive carbonaceous char (Roberts, 1970; Shafizaden, 1984). When reaching the 
required temperature of the volatiles and tarry substance, the flaming combustion phase 
commences, which could provide enough energy for the gasification of the biofuel substrate, 
propagation of the fire and char formation until the combustible volatile flux drops below 
the minimum level required for the propagation of flaming combustion. Then the 
smoldering process starts and is best described as the gradual oxidation of the reactive char 
(solid phase combustion). Table 1 shows the characteristics of various combustion processes 
during the different combustion phases. The gas and particle-phase chemical species 
contained in the smoke released during biomass/biofuel include a large number of 
compounds with a wide range of chemical and physical properties, depending on biofuel 
type and combustion conditions. As it is beyond the scope of this chapter to give a 
comprehensive overview of the chemical smoke constituents, the reader is referred to some 
key literature (Andreae and Merlet, 2001; Hays et al., 2002; Christian et al., 2003; Akagi et al., 
2010), while we will focus the discussion here on source-specific compounds, i.e., molecular 
tracers for biomass/biofuel combustion. 

www.intechopen.com



 
Biofuel Combustion Emissions - Chemical and Physical Smoke Properties 

 

105 

Combustion Stage Process Process Characteristics 

Drying/Distilling 
Process 

Water and volatile contents are removed or 
diffused into the inner layers of the bulk 
material 

Pyrolysis Process 

Starts at about 400 K 
Below 450 K the process is endothermic 
Above 450 K the process is exothermic 
Dehydrocellulose decompostion takes place 

Solid 
Phase

Glowing 
Combustion 

Starts at about 800 K if oxygen is present 
Resulting in char being oxidized 

Flamming 
Stage 

Gas 
Phase

The Flame 
The emitted volatiles are converted to 
combustion products of low-molecular weight 

Smoldering Stage 
Smoldering 

Process 

A low-temperature process 
Takes place at concentrations of oxygen as low 
as 5% 
Can proceed over days under conditions of 
high moisture 

Table 1. Different combustion stages and the characteristics of different combustion processes 

4. Molecular tracers for biomass burning processes 

During the combustion, the cellulose molecules decompose by two pathways. When the 
temperature is <300 degrees C, biofuels are depolymerized, fragmented and oxidized to 
char. During the second pathway, i.e. > 300 degrees C, bond cleavage by transglycosylation, 
fission and disproportionation reactions give rise to the formation of levoglucosan, 
accompanied by its stereoisomers, mannosan (Man) and galactosan (Gal). (Simoneit et al., 
1999; Schmidl et al., 2008b; Engling et al., 2009; Fabbri et al., 2009). Due to reasonable 
atmospheric stability with no decay over 10 days in acidic conditions, levoglucosan has been 
widely used as a molecular marker for biomass burning processes (Fraser and Lakshmanan, 
2000), although it could be oxidized when exposed to gas phase hydroxyl radicals (OH) 
(Hennigan et al., 2010), nitrate (NO3) or sulfate (SO4) radicals (Hoffmann et al., 2010). 
Combustion of other materials (e.g., fossil fuels) or biodegradation and hydrolysis of 
cellulose does not produce any levoglucosan.  
The typical bulk chemical composition of smoke particles derived from agricultural 
residues/fuels is shown in Figure 4 by the example of rice straw smoke particles. While OC 
being the predominant species in the carbonaceous fraction, chloride and potassium are the 
key components in the ionic fraction of smoke aerosol found in source emissions studies. As 
such, biomass burning plumes are generally characterized by high water-soluble potassium 
content, specifically enriched in the fine mode. Thus, potassium has also been used as source 
tracer to estimate the contributions of biomass burning smoke to the ambient aerosol burden 
(e.g., Duan et al., 2004). However, other sources, such as sea salt, mineral dust and meat 
cooking, contribute additional potassium to atmospheric PM (Lawson and Winchester, 1979; 
Morales et al., 1996; Schauer et al., 2002). This may cause a certain bias in the quantitative 
estimation of contributions from biomass burning emissions when using potassium as 
source tracer, although a correction for sea-salt contributions is possible. 
Potassium/levoglucosan ratios which could be utilized for the identification of open/stove 
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fires are below 0.2 for wood combustion in fire places and ovens, while they approach 0.5 
for open fires (Fine et al., 2001; Fine et al., 2002; Fine et al., 2004a; Puxbaum et al., 2007).  
 

 

Fig. 4. Typical chemical composition of smoke particles derived from rice straw burning 

Table 2 gives a summary of ambient concentrations of levoglucosan, mannosan and 
galactosan reported for rural, suburban and urban regions around the world. Anhydrosugar 
concentrations at rural sites have been observed with the highest levels, reaching thousands 
of ng/m3, while they were in the hundreds ng/m3 levels in suburban and urban locations. 
The variability in these data is mainly influenced by the biofuel usage patterns and potential 
smoke transport.   
 

Location Season
Particle 

Size 

Levoglucosan 
(ng m-3)  
(Range 

(ave)/Ave±S.D.)

Mannosan  
(ng m-3)  
(Range 

(ave)/Ave±S.D.)

Galactosan  
(ng m-3)  
(Range 

(ave)/Ave±S.D.) 

Reference 

Rural Dry PM2.5 1182 - 6900 (2460) 6.0 - 371 (126) 2.3 - 148 (55.4) 
Graham et 
al., 2002 

Rural Dry PM2.5 40 - 2660 (1180) 1.7 - 127 (49.5) 1.6 – 44.6 (22.7) 
Graham et 
al., 2002 

Rural Dry PM2.5 446 - 4106 (2006) 21 - 259 (116) 7.6 – 61.5 (31) 
Zdrahal et 
al., 2002 

Rural Dry PM2.5 
 1182 - 6900 
(2460)  6 - 371 (126)  2 – 148 (55) 

Simoneit et 
al., 2004 

Rural Dry PM2.5 284 - 7485 (2222) 23.7 - 543 (152) 7.7 - 261 (58.7) 
Decesari et 
al., 2006 

Rural Dry PM2.5 763 - 7903 (3698) 34.0 - 345 (151) 16.4 - 193 (80.3) 
Decessari 
et al., 2006 

Suburban Winter PM10 134 - 971 (407) 34 - 286 (116) 1 - 7 (2) 
Yttri et al., 
2007 

Suburban Winter PM10 232 - 971 (605) 56 - 286 (167) 1.1 - 6.8 (4.0) 
Yttri et al., 
2007 

Suburban Summer PM10 n.d. - 151 (47) n.d. - 42 (10) n.d. – 7.5 (3) 
Yttri et al., 
2007 
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Location Season
Particle 

Size 

Levoglucosan 
(ng m-3)  
(Range 

(ave)/Ave±S.D.)

Mannosan  
(ng m-3)  
(Range 

(ave)/Ave±S.D.)

Galactosan  
(ng m-3)  
(Range 

(ave)/Ave±S.D.) 

Reference 

Urban Winter PM10 121 - 1133 (477) 17.3 - 153 (66) 4.4 – 44.2 (19.6) 
Zdrahal et 
al., 2002  

Urban Winter PM10 420 61 25 
Pashynska 
et al., 2002  

Urban Summer PM10 19.1 3 1 
Pashynska 
et al., 2002  

Urban Winter PM10  121 - 1133 (477)  17 - 153 (66)  4 - 44 (20) 
Simoneit et 
al., 2004 

Urban Winter TSP  6 - 56  0.2 - 15  0.6 - 2.4 
Simoneit et 
al., 2004 

Urban Winter TSP 
 1162 - 33400 
(14460) 

 154 - 4430 
(1422)  84 - 2410 (1014) 

Simoneit et 
al., 2004 

Urban Winter TSP 1350 108 106 
Simoneit et 
al., 2004 

Urban Winter PM10 n.d. - 475 (166) n.d. - 155 (41) n.d. - 17 (3) 
Yttri et al., 
2007 

Urban Summer PM2.5 860 - 6090 330 - 1090 130 - 490 
Ward et 
al., 2006 

Urban Fall PM10 n.d. - 475 (193) n.d. - 155 (52) n.d. – 6.9 (1.7) 
Yttri et al., 
2007 

Urban Yearly PM10 120 - 160(140) 18 - 44 (31) 5 - 12 (8.5) 
Caseiro et 
al., 2009 

Urban Yearly PM10 250 - 480 (380) 37 - 114 (84) 14 - 37 (28) 
Caseiro et 
al., 2009 

Urban Yearly PM10 150 - 220 (193) 27 - 40 (35) 7 - 12 (10) 
Caseiro et 
al., 2009 

Urban Winter PM10 430 - 1894 (901) 22 - 134 (54) 30 - 186 (96) 
Xie et al., 
2011 

Urban Spring PM10 87 - 644 (261) 3.8 - 37 (15) 7.2 - 85 (30) 
Xie et al., 
2010 

Urban Winter PM1 422 ± 165 71.2 ± 25.8 19.5 ± 7.67 
Krumal et 
al., 2010 

Urban Winter PM2.5 572 ± 71.3 105 ± 14.1 48.7 ± 2.92 
Krumal et 
al., 2010 

Urban  Summer PM10 15.6 - 472.9   
Zhang et 
al., 2010 

Urban Spring PM2.5 26.2 – 133.7 (36.0)   
Sang et al., 
2011 

Suburban Spring PM2.5 21.1 – 91.5 (30.0)   
Sang et al., 
2011 

Table 2. Ambient concentrations of anhydrosugars reported in the literature 
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Biomass 
type 

Combustion
type 

Location
Particle

size 
Lev/Man Lev/Gal

Lev/ 
(Gal+Man)

Reference 

Cereal 
straw 

Chamber 
burn 

China PM2.5 55.7  52.4 
Zhang et al., 

2007 

Rice straw 
Chamber 

burn 
Taiwan PM2.5 40 14.0 10.3 

Engling et al., 
2009 

Rice straw 
Chamber 

burn 
Bangladesh PM2.5 41.6 25.1 15.6 

Sheesley et al., 
2003 

Sugarcane 
Chamber 

burn 
Malaysia TSP 12.7 12.7 6.4 Oros et al., 2006 

Peat 
Chamber 

burn 
Sumatra,
Indonesia

PM10 11.4 28.1 8.1 
Iinuma et al., 

2007 

Leaves 
Open air 
burning 

Lower-
Austria 

PM10 5.5 1.3 1.0 
Schmidl et al., 

2008 

Pine 
Chamber 

burn 
Germany PM10 3.8 5.0 2.1 

Iinuma et al., 
2007 

Pine Wildfire Canada  2.5 10.0 2.0 Otto et al., 2006 

Pine 
Chamber 

burn 
US PM2.5 3.0 12.6 2.4 

Engling et al., 
2006a 

Spruce 
Residential 

stove 
Austria PM10 3.6 12.6 2.8 

Schmidl et al., 
2008 

White 
spruce 

Residential
fireplace 

Western 
US 

PM2.5 3.9 14.2 3.1 Fine et al., 2004 

Douglas fir 
Residential

fireplace 
Western 

US 
PM2.5 4.4 22.6 3.7 Fine et al., 2004 

Hemlock 
Residential

fireplace 
North-

Eastern US
PM2.5 3.7 38.7 3.4 Fine et al., 2001 

Cottonwood 
Chamber 

burn 
US PM2.5 14 23.4 8.7 

Engling et al., 
2006a 

Beech 
Residential 

stove 
Austria PM10 14.6 20.5 8.5 

Schmidl et al., 
2008 

Musasa 
Chamber 

burn 
Africa PM10 22.7 25.0 11.9 

Iinuma et al., 
2007 

White oak 
Residential

fireplace 
Western 

US 
PM2.5 12.9 20.4 7.9 Fine et al., 2004 

Sugar 
maple 

Residential
fireplace 

Western 
US 

PM2.5 19.8 84.0 16.0 Fine et al.,2004 

Red maple 
Residential

fireplace 
North-

Eastern US
PM2.5 33.2  33.2 Fine et al., 2001 

Red oak 
Residential

fireplace 
North-

Eastern US
PM2.5 35.4 47.7 20.3 Fine et al., 2001 

Table 3. The ratios of Lev/Man, Lev/Gal and Lev/(Gal+Man) for various types of biomass 

The ratios of levoglucosan to other anhydrosugars in biomass burning smoke particles can 
be used to identify the specific biomass burning types. For example, levoglucosan to 
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mannosan (Lev/Man) could be used to distinguish the biomass/biofuel types, such as 
softwood versus hardwood or coniferous versus deciduous wood (Ward et al., 2006; 
Oliveira et al., 2007; Pio et al., 2008; Schmidl et al., 2008a; 2008b; Engling et al., 2009). 
Galactosan is usually 10-50 times less abundant in smoke PM than levoglucosan and 1-3 
times lower than mannosan levels (Schmidl et al., 2008a). The levoglucosan/galactosan 
(Lev/Gal) ratio, for example, has been used to distinguish smoke aerosol from leaf and 
wood burning (Schmidl et al., 2008a). Moreover, levoglucosan to mannosan (Lev/Man) and 
levoglucosan to mannosan plus galactosan (Lev/(Man+Gal)) ratios were proposed as 
discriminators of smoke aerosol from lignite and extant biomass due to the lower galactosan 
content in lignite (Fabbri et al., 2009).  
Table 3 summarizes the typical Lev/Man ratios for various biomass/biofuels reported in the 
literature. Sheesley et al. (2003) reported a Lev/Man ratio in PM2.5 for rice straw burning in 
Bangladesh of 41.6, similar to the ratio of 40 found for rice straw in Taiwan (Engling et al., 
2009), while that of mixed cereal straw (wheat, rice and corn) in China was 55.7 (Zhang et 
al., 2007). Compared with rice straw burning, the ratios of sugarcane and bamboo smoke in 
the same grass family are relatively low with a range of 5-13, while that of peanuts in the 
bean family was in the range of sugarcane and bamboo (Oros et al., 2006; Iinuma et al., 2007) 
(Table 3). The Lev/Man ratio for soft wood (spruce, fir and pine) ranged from 3-6 in the US 
(Fine et al., 2001; Fine et al., 2004b) and 2.5-4 in Germany, Austria and Canada (Otto et al., 
2006; Iinuma et al., 2007; Schmidl et al., 2008b) (Table 3). Fine et al. (2001; 2004b) and Engling 
et al. (2006a) showed that the Lev/Man ratios for hard wood (oak, maple, beech, cherry and 
aspen) varied from 13-35, while it was 12.5-22.7 for beech and musasa (Iinuma et al., 2007; 
Schmidl et al., 2008b) in Austria and Africa (Table 3). Thus, we could conclude that the 
Lev/Man ratios could be used to at least differentiate soft wood (2-6), hard wood (13-35), 
and crop residue (40-55.7).  

5. Size-resolved composition of biomass burning smoke 

The investigation of the size-resolved composition of biofuel burning smoke has recently 
gained attention in source/near source and ambient studies. Typically, biofuel smoke 
emissions are characterized by predominantly fine (<2.5 µm aerodynamic diameter) 
particles (Engling et al., 2006b), which has also been observed in ambient aerosol particles 
influenced by biomass/biofuel smoke (Wang et al., 2009). For instance, carbonaceous 
aerosol and biomass smoke markers in particular were found predominantly in submicron 
particles during a long-range transport episode of wood smoke effecting Yosemite National 
Park in California, US (Herckes et al., 2006). A temporal variation in PM size distributions 
suggested a certain dependence on the burning process or atmospheric processing of the 
smoke particles. In contrast, a substantial mass fraction of the anhydrosugar tracers, 
including levoglucosan, was recently found in aerosol particles with diameters larger than 
10 μm in ambient aerosols (Lee et al., 2008), indicating possible influence by the ambient 
atmospheric conditions, such as high relative humidity, in addition to unique properties of 
the biofuel and the specific burning practices.  
Likewise, a distinct bimodal distribution was observed with a large fraction of levoglucosan 
present in a super-coarse mode (>10 μm aerodynamic particle diameter) as well as a fine 
mode (<0.49 μm aerodynamic particle diameter) in a rice straw field burning study 
conducted by Engling et al. (2009) (Figure 5). In a more precise size distribution study, 
Wang et al. (2009) reported that concentrations of particulate matter (PM) mass, n-alkanes, 
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and low molecular weight (LMW) PAHs and levoglucosan showed a unimodal size 
distribution, peaking at 0.7-1.1 μm during the hazy days impacted by wheat straw burning, 
and a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm in normal days. 
 

 

Fig. 5. Levoglucosan size distributions based on 7 particle size ranges (<0.49 μm; 0.49–0.95 
μm; 0.95–1.5 μm; 1.5–3 μm; 3–7.2 μm; 7.2–10 μm; and 10–50 μm) in smoke particles generated 
during field burning of rice straw 

6. Chemical analysis methods  

Much effort has been put into developing methods for the quantification of biomass burning 
products and particularly the smoke tracers, such as the anhydrosugars. Both gas 
chromatographic (GC) and aqueous-phase methods have been reported (Schkolnik and 
Rudich, 2006). The former methods are the most common ones with good separation and 
high sensitivity by utilizing mass spectrometric (MS) detectors (Zdrahal et al., 2002), but 
require complex sample preparation, large amounts of solvents, and expensive equipment. 
The latter ones, including Electrospray Ionization–Mass Spectrometry (ESI-MS) (Wan and 
Yu, 2006), Microchip Capillary Electrophoresis (microchip-CE) with Pulsed Amperometric 
Detection (PAD) (Garcia et al., 2005), Ion-exclusion Chromatography (IEC) (Schkolnik et al., 
2005), High Performance Liquid Chromatography (HPLC) (Dye and Yttri, 2005; Dixon and 
Baltzell, 2006), and High Performance Anion Exchange Chromatography (HPAEC) coupled 
with PAD or MS (Engling et al., 2006a), have been developed more recently and are, 
therefore, at present applied less frequently for the quantification of levoglucosan and other 
biomass/biofuel combustion products. However, these methods are rapidly gaining 
attention due to their speed and no need for chemical derivatizations (Ma et al., 2010). The 
IEC-HPLC-PDA method, for instance, is suitable for measuring levoglucosan, inorganic ions 
and carboxylic acids in a large set of water-extracted aerosols or aqueous samples. HPLC-
ESI-MS has been shown to completely separate levoglucosan from its isomers in 
concentrations ranging from background to polluted levels with short sample preparation, 
good separation and high sensitivity. However, for detailed organic speciation of smaller 
sets of samples, GC-MS analysis remains the method of choice to date. 
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Recently, stable carbon isotope analysis is emerging as a powerful tool to provide additional 
constraints on the atmospheric budgets, and to increase our understanding of source 
emissions and ambient aerosols influenced by biomass burning (Goldstein and Shaw, 2003; 
Huang et al., 2006) and secondary formation processes (Fisseha et al., 2009a). Stable carbon 
isotopic composition can be determined for both bulk material (e.g., total carbon) and for 
individual compounds (Hoefs, 1987; Flanagan et al., 2005). However, until recently few 
studies have applied stable isotope measurements to atmospheric chemistry and 
particularly for biomass burning aerosols  (Rudolph, 2007). The measurement of isotopic 
ratios for the biomass burning tracer levoglucosan is still not explored because of the high 
polarity of the sugars and the resulting difficult separation. Martinelli et al. (2002) 
determined the bulk stable carbon isotopic composition of organic matter in aerosols in 
order to assess sugar cane sources. Rudolph et al. (1997) and Iannone et al. (2007) presented 
a new method named gas chromatography coupled to isotope ratio mass spectrometry (GC-
C-IRMS) to determine the isotopic ratio of volatile organic carbons (VOCs). Fisseha et al. 
(2009a) determined the δ13C values of formic, acetic and oxalic acid in ambient gas and 
aerosol phases using a wet oxidation method followed by isotope ratio mass spectrometry. 
The first chamber study of investigating the stable carbon isotopic composition of secondary 
organic aerosol (SOA) formed from ozonolysis of β-pinene was conducted by Fisseha et al. 
(2009b). As for biomass burning aerosols, O'Malley et al. (1997) and Czapiewski et al. (2002) 
determined the isotopic composition of the non-methane hydrocarbons in emissions from 
biomass burning by using a GC-MS/C/IRMS system.  

7. Impact of biomass burning smoke   

The influence of smoke emissions from biomass/biofuel burning on the immediate 
surroundings and on areas downwind of the fire activity can be manifold. In this section, 
findings from several case studies are used to demonstrate the significant impacts that can 
be exerted by biomass smoke particles. The importance of the impact of biomass burning in 
the tropics on atmospheric chemistry and biogeochemical cycles was pointed out in the 
early 1990s by Curtzen and Andreae (1990). South and Southeast Asia are the two major 
biomass burning source regions in the world with natural forest fires and human initiated 
burning activities (Haberle et al., 2001; Pochanart et al., 2003; Radojevic, 2003; Sheesley et al., 
2003; Venkataraman et al., 2005; Hasan et al., 2009; Chang and Song, 2010; Ram and Sarin, 
2010). Chan et al. (2000) first showed with in-situ sounding measurements, satellite data and 
trajectory analyses that the frequently observed springtime ozone enhancements in the 
lower troposphere over Hong Kong were due to photochemical reactions during the 
transport of ozone precursors originating from the upwind Southeast Asian subcontinent, 
where intensive biomass burning activities occur during each spring. The enhanced ozone 
accompanied with a layer of increased biomass burning tracers, such as methyl chloride and 
carbonaceous aerosol, was shown to further extend to other parts of subtropical south 
China, the east Asian coast and western Pacific (Chan et al., 2003a,b).  
In addition, aircraft and mountain-top measurements have shown that smoke aerosol 
derived from biomass burning activities in Southeast and East Asia can be transported 
eastward towards (and across) the Pacific Ocean (Bey et al., 2001; Jacob et al., 2003; Ma et al., 
2003b). Ma et al. (2003a) observed biomass burning plumes with enhanced fine particle 
potassium and CO concentrations originating from Southeast Asia during the experimental 
period of the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign in 
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March, 2001. Lin et al. (2010) observed elevated carbon monoxide (CO) mixing ratios in 
central Taiwan due to biomass burning activities in the Asian continent, including India, the 
Indochina Peninsula and south Coastal China from January to April 2008. Stohl et al. (2007) 
predicted that an air pollution plume in the upper troposphere over Europe on 24-25 March 
2006 originated from Southern and Eastern Asia with the FLEXPART particle dispersion 
model. Most recently, it was shown that biomass (rice straw) smoke generated in the 
Philippines could be transported to southeast coastal China and can contribute to 16-28% of 
the ambient OC burden in the background atmosphere during spring (Zhang et al., 2011).  
 

 

Fig. 6. Smoke pixels estimated from AVHRR on (left) October 7 and 12, and (right) 
November 28 and 30, 1997 during the Indonesian forest fire period in 1997. The borders 
indicate the coverage area of the satellite images 

During the extreme El Nino period in 1997, when agricultural burning went out of control 
and resulted in widespread forest fires in Indonesia, Chan et al. (2003b) showed that the 
smoke aerosol can span over large gographical regions to high latitudes of south China 
(Figure 6), while Thompson et al. (2001) reported that it can reach longitudially as far as to 
the Indian Ocean. Chan et al. (2003b) further showed with evidence form in-situ ozonesonde 
measurements and empirical formulation results that such large-scale biomass burning can 
result in significant changes in atmospheric composition and radiative forcing in tropical 
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and subtropical Asia and the western Pacific. Furthermore, Wang et al. (2007b) reported that 
plumes of biomass burning aerosols in South Asia had been extended to the Indian Ocean 
and the western Pacific Ocean.  
The Tibetan Plateau is the largest plateau in the world, which exerts profound effects on the 
regional and global radiative budget and climate (Lau et al., 2006; Wang et al., 2006). 
However, scarce data of trace gases and aerosols were observed in this region, let alone 
biomass burning smoke aerosol. Chan et al. (2006) showed that pollution from active fire 
regions of Southeast Asia and South Asia had relatively strong impact on the abundance of 
O3, trace gases and aerosols in the background atmosphere of the Tibetan Plateau. 
According to the characteristic levoglucosan/mannosan (Lev/Man) ratios, Sang et al. (2011) 
identified for the first time that a mountain site in the Tibetan Plateau was affected by long-
range transported biomass burning smoke derived from soft wood and crop residue 
burning in South/Southeast Asia, while a suburban site was mainly affected by local 
(residential) soft-wood burning. At a remote mountain site in the southeastern part of the 
Tibetan Plateau during spring, Engling et al. (2011) showed a substantial regional build-up 
of BC and other aerosol components during the dry period, accompanied by fire activities 
and transport of pollution from the nearby regions of Southeast Asia and the northern part 
of the Indian Peninsula (Figure 7). Moreover, BC and aerosol mass concentrations during 
episodic events were found to be comparable to those reported for certain large Asian cities, 
mainly due to influence from biomass/biofuel smoke. 
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Fig. 7. Daily average concentrations of PM2.5, PM10, black carbon and rainfall at a remote 
mountain site in the southeastern Tibetan Plateau at Tengchong during April-May 2004 

In the highly developed Pearl River Delta, biomass smoke contributes a sizeable portion of 
the ambient aerosol mass as well, as shown by high concentrations of the biomass burning 
gas-phase tracer CH3Cl (Chan et al., 2003a). The biomass burning smoke contributions to 
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fine particles were 3-19% (Wang et al., 2007a) and to organic carbon in PM10 were 7.0-14% 
(Zhang et al., 2010) in Guangzhou. Aerosols in Beijing were heavily influenced by different 
kinds of biofuel burning all year long. The wheat harvest season in summer is the most 
intensive period, while biomass smoke influence could be detected in spring (due to field 
preparation burning) and autumn as well (burning of maize residue and fallen dead leaves) 
(Duan et al., 2004). The contributions from biofuel burning were 18–38% and 14–32% to the 
PM2.5 and PM10 organic carbon in Beijing, respectively (Zhang et al., 2008). 

8. Conclusions 

The combustion of biomass/biofuels for agricultural residue removal and domestic use (for 
cooking and heating) is a major source of smoke emissions, in addition to large-scale 
savanna and forest fires, on a global scale. The Asian continent in particular is a major 
source region of smoke aerosol. As most of these burning processes occur with little/no 
control and at low combustion efficiency, the amount of smoke emitted and the resulting 
effects on air quality and global climate are substantial. While importnat advances have 
been made lately, by conducting detailed source emissions studies and using novel chemical 
analysis methods for smoke particle characterization, the uncertainty in the estimates of 
biofuel smoke emissions and their environmental effects remains rather large. It is, 
therefore, critical to assess the particle-size dependent chemical composition and physical as 
well as optical properties of biomass/biofuel smoke particles in future source and ambient 
studies. 
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