11,754 research outputs found

    Search for exact local Hamiltonians for general fractional quantum Hall states

    Full text link
    We report on our systematic attempts at finding local interactions for which the lowest-Landau-level projected composite-fermion wave functions are the unique zero energy ground states. For this purpose, we study in detail the simplest non-trivial system beyond the Laughlin states, namely bosons at filling ν=23\nu=\frac{2}{3} and identify local constraints among clusters of particles in the ground state. By explicit calculation, we show that no Hamiltonian up to (and including) four particle interactions produces this state as the exact ground state, and speculate that this remains true even when interaction terms involving greater number of particles are included. Surprisingly, we can identify an interaction, which imposes an energetic penalty for a specific entangled configuration of four particles with relative angular momentum of 66\hbar, that produces a unique zero energy solution (as we have confirmed for up to 12 particles). This state, referred to as the λ\lambda-state, is not identical to the projected composite-fermion state, but the following facts suggest that the two might be topologically equivalent: the two sates have a high overlap; they have the same root partition; the quantum numbers for their neutral excitations are identical; and the quantum numbers for the quasiparticle excitations also match. On the quasihole side, we find that even though the quantum numbers of the lowest energy states agree with the prediction from the composite-fermion theory, these states are not separated from the others by a clearly identifiable gap. This prevents us from making a conclusive claim regarding the topological equivalence of the λ\lambda state and the composite-fermion state. Our study illustrates how new candidate states can be identified from constraining selected many particle configurations and it would be interesting to pursue their topological classification.Comment: 21 pages, 11 figure

    Mean Reversion in Equilibrium Asset Prices

    Get PDF
    Recent empirical studies have found that stock returns contain substantial negative serial correlation at long horizons. We examine this finding with a series of Monte Carlo simulations in order to demonstrate that it is consistent with an equilibrium model of asset pricing. When investors display only a moderate degree of risk aversion, commonly used measures of mean reversion in stock prices calculated from actual returns data nearly always lie within a 60 percent confidence interval of the median of the Monte Carlo distributions. From this evidence, we conclude that the degree of serial correlation in the data could plausibly have been generated by our model.

    On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    Get PDF
    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution

    Common Mode Filtering with Metamaterial-Inspired Structures

    Get PDF
    High-speed digital communication links typically employ differential signaling as an alternative to single ended signaling. The design challenge using these differential lines are that perfect symmetry in the signals sent and in the physical communication line must be maintained to prevent some of the differential mode signal’s energy to be converted to a common-mode signal. The main objective of a common-mode filter is to filter out this common-mode noise while leaving the differential signal intact. Our strategy in this project was to look into past work on common Electric Field Magnetic Field Common Mode Signal Differential Mode Signal Magnetic Field Electric Field Page 3 mode filtering, to develop some accurate models for simulations, and to develop some new structures that also filter out the common mode noise

    Tuning the Performance of a Computational Persistent Homology Package

    Get PDF
    In recent years, persistent homology has become an attractive method for data analysis. It captures topological features, such as connected components, holes, and voids from point cloud data and summarizes the way in which these features appear and disappear in a filtration sequence. In this project, we focus on improving the performanceof Eirene, a computational package for persistent homology. Eirene is a 5000-line open-source software library implemented in the dynamic programming language Julia. We use the Julia profiling tools to identify performance bottlenecks and develop novel methods to manage them, including the parallelization of some time-consuming functions on multicore/manycore hardware. Empirical results show that performance can be greatly improved

    Flux reversal in a two-state symmetric optical thermal ratchet

    Full text link
    A Brownian particle's random motions can be rectified by a periodic potential energy landscape that alternates between two states, even if both states are spatially symmetric. If the two states differ only by a discrete translation, the direction of the ratchet-driven current can be reversed by changing their relative durations. We experimentally demonstrate flux reversal in a symmetric two-state ratchet by tracking the motions of colloidal spheres moving through large arrays of discrete potential energy wells created with dynamic holographic optical tweezers. The model's simplicity and high degree of symmetry suggest possible applications in molecular-scale motors.Comment: 4 pages, 5 figures, accepted for publication in Physical Review E, Rapid Communication

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Giant Colloidal Diffusivity on Corrugated Optical Vortices

    Full text link
    A single colloidal sphere circulating around a periodically modulated optical vortex trap can enter a dynamical state in which it intermittently alternates between freely running around the ring-like optical vortex and becoming trapped in local potential energy minima. Velocity fluctuations in this randomly switching state still are characterized by a linear Einstein-like diffusion law, but with an effective diffusion coefficient that is enhanced by more than two orders of magnitude.Comment: 4 pages, 4 figure
    corecore