109 research outputs found

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Relationship between PPI and baseline startle response

    Get PDF
    Prepulse inhibition (PPI) of the startle response to a sudden noise is the reduction in startle observed when the noise is preceded shortly by a mild sensory event, which is often a tone. A part of the literature is based on the assumption that PPI is independent of the baseline startle. A simple model is presented and experimental validation provided. The model is based on the commonly accepted observation that the neuronal circuit of PPI differs from that of startle. But, by using a common output, the measures of both phenomena become linked to each other. But, how can we interpret the numerous experimental data showing PPI to be independent of the startle level? It is suggested that in a number of such cases the baseline startle would have been stabilized by a ceiling effect in the startle/PPI neuronal networks. Reducing the startle level, for example in a PPI evaluation procedure, may disclose properties of startle masked by this ceiling effect. Disclosure of habituation to the startle eliciting noise produced an increase of PPI along its initial measurements. Taken together, even if the neuronal process that sustains startle and PPI are distinct, separating them experimentally requires careful parametric methods and caution in the interpretation of the corresponding observations

    PLoS Negl Trop Dis

    Get PDF
    BACKGROUND: During the Ebola virus disease (EVD) epidemic in Liberia, contact tracing was implemented to rapidly detect new cases and prevent further transmission. We describe the scope and characteristics of contact tracing in Liberia and assess its performance during the 2014-2015 EVD epidemic. METHODOLOGY/PRINCIPAL FINDINGS: We performed a retrospective descriptive analysis of data collection forms for contact tracing conducted in six counties during June 2014-July 2015. EVD case counts from situation reports in the same counties were used to assess contact tracing coverage and sensitivity. Contacts who presented with symptoms and/or died, and monitoring was stopped, were classified as "potential cases". Positive predictive value (PPV) was defined as the proportion of traced contacts who were identified as potential cases. Bivariate and multivariate logistic regression models were used to identify characteristics among potential cases. We analyzed 25,830 contact tracing records for contacts who had monitoring initiated or were last exposed between June 4, 2014 and July 13, 2015. Contact tracing was initiated for 26.7% of total EVD cases and detected 3.6% of all new cases during this period. Eighty-eight percent of contacts completed monitoring, and 334 contacts were identified as potential cases (PPV = 1.4%). Potential cases were more likely to be detected early in the outbreak; hail from rural areas; report multiple exposures and symptoms; have household contact or direct bodily or fluid contact; and report nausea, fever, or weakness compared to contacts who completed monitoring. CONCLUSIONS/SIGNIFICANCE: Contact tracing was a critical intervention in Liberia and represented one of the largest contact tracing efforts during an epidemic in history. While there were notable improvements in implementation over time, these data suggest there were limitations to its performance-particularly in urban districts and during peak transmission. Recommendations for improving performance include integrated surveillance, decentralized management of multidisciplinary teams, comprehensive protocols, and community-led strategies

    Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (<it>Panicum virgatum </it>L.) ubiquitin genes (<it>PvUbi1 </it>and <it>PvUbi2</it>) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters) fused to the <it>uidA </it>coding region (<it>GUS</it>) and tested for transient and stable expression in a variety of plant species and tissues.</p> <p>Results</p> <p><it>PvUbi1 </it>consists of 607 bp containing <it>cis</it>-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. <it>PvUbi2 </it>consists of 692 bp containing <it>cis</it>-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. <it>PvUbi1 </it>and <it>PvUbi2 </it>were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV <it>35S, 2x35S, ZmUbi1</it>, and <it>OsAct1 </it>promoters. GUS staining following stable transformation in rice demonstrated that the <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters drove expression in all examined tissues. When stably transformed into tobacco (<it>Nicotiana tabacum</it>), the <it>PvUbi2+3 </it>and <it>PvUbi2+9 </it>promoter fusion variants showed expression in vascular and reproductive tissues.</p> <p>Conclusions</p> <p>The <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.</p

    High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison

    Get PDF
    The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change
    corecore