20 research outputs found

    Identification of a robust gene signature that predicts breast cancer outcome in independent data sets

    Get PDF
    BACKGROUND: Breast cancer is a heterogeneous disease, presenting with a wide range of histologic, clinical, and genetic features. Microarray technology has shown promise in predicting outcome in these patients. METHODS: We profiled 162 breast tumors using expression microarrays to stratify tumors based on gene expression. A subset of 55 tumors with extensive follow-up was used to identify gene sets that predicted outcome. The predictive gene set was further tested in previously published data sets. RESULTS: We used different statistical methods to identify three gene sets associated with disease free survival. A fourth gene set, consisting of 21 genes in common to all three sets, also had the ability to predict patient outcome. To validate the predictive utility of this derived gene set, it was tested in two published data sets from other groups. This gene set resulted in significant separation of patients on the basis of survival in these data sets, correctly predicting outcome in 62–65% of patients. By comparing outcome prediction within subgroups based on ER status, grade, and nodal status, we found that our gene set was most effective in predicting outcome in ER positive and node negative tumors. CONCLUSION: This robust gene selection with extensive validation has identified a predictive gene set that may have clinical utility for outcome prediction in breast cancer patients

    Pathologic and biologic response to preoperative endocrine therapy in patients with ER-positive ductal carcinoma in situ

    Get PDF
    Abstract Background Endocrine therapy is commonly recommended in the adjuvant setting for patients as treatment for ductal carcinoma in situ (DCIS). However, it is unknown whether a neoadjuvant (preoperative) anti-estrogen approach to DCIS results in any biological change. This study was undertaken to investigate the pathologic and biomarker changes in DCIS following neoadjuvant endocrine therapy compared to a group of patients who did not undergo preoperative anti-estrogenic treatment to determine whether such treatment results in detectable histologic alterations. Methods Patients (n = 23) diagnosed with ER-positive pure DCIS by stereotactic core biopsy were enrolled in a trial of neoadjuvant anti-estrogen therapy followed by definitive excision. Patients on hormone replacement therapy, with palpable masses, or with histologic or clinical suspicion of invasion were excluded. Premenopausal women were treated with tamoxifen and postmenopausal women were treated with letrozole. Pathologic markers of proliferation, inflammation, and apoptosis were evaluated at baseline and at three months. Biomarker changes were compared to a cohort of patients who had not received preoperative treatment. Results Median age of the cohort was 53 years (range 38–78); 14 were premenopausal. Following treatment, predominant morphologic changes included increased multinucleated histiocytes and degenerated cells, decreased duct extension, and prominent periductal fibrosis. Two postmenopausal patients had ADH only with no residual DCIS at excision. Postmenopausal women on letrozole had significant reduction of PR, and Ki67 as well as increase in CD68-positive cells. For premenopausal women on tamoxifen treatment, the only significant change was increase in CD68. No change in cleaved caspase 3 was found. Two patients had invasive cancer at surgery. Conclusion Preoperative therapy for DCIS is associated with significant pathologic alterations. These changes may be clinically significant. Further work is needed to identify which women may be the best candidates for such treatment for DCIS, and whether best responders may safely avoid surgical intervention. Trial Registration ClinicalTrials.gov NCT0029074

    Breast tumor copy number aberration phenotypes and genomic instability

    Get PDF
    BACKGROUND: Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. METHODS: We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. RESULTS: We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. CONCLUSION: Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

    LM-PCR Permits Highly Representative Whole Genome Amplification of DNA Isolated from Small Number of Cells and Paraffin-Embedded Tumor Tissue Sections

    No full text
    Analysis of genetic changes is often hampered by insufficient starting DNA from limited clinical tissue specimens. We employed ligation-mediated PCR (LM-PCR) for global amplification of the genome to overcome this limitation, generating up to 5 g of representative amplicons of genomic DNA from as little as one cell. We demonstrate successful global genome amplification in high-quality starting DNA source like laser-captured cultured cells, as well as partially degraded starting DNA from old formalin-fixed paraffinembedded tissue sections. This process generates adaptor-tailed templates that can be repeatedly amplified almost ad infinitum. We have further modified this technique such that, instead of a single endonuclease digest, we can achieve higher amplicon coverage by combining 3 endonuclease digests prior to LM-PCR. As tested by examining amplification of STS sequences scattered genome-wide, the coverage was improved from the published 70% to 96%. The faithful representation of global losses and gains in the amplified genomic DNA was confirmed by array-comparative genomic hybridization. Further, we exemplify the utility of this technique for finer p53 point mutation analysis by PCR-SSCP. This technique is thus a clinically useful tool for globally amplifying and archiving DNA from finite sources like paraffin tissue sections, providing a potentially unlimited resource for genetic analyses

    Identification of a robust gene signature that predicts breast cancer outcome in independent data sets

    No full text
    Abstract Background Breast cancer is a heterogeneous disease, presenting with a wide range of histologic, clinical, and genetic features. Microarray technology has shown promise in predicting outcome in these patients. Methods We profiled 162 breast tumors using expression microarrays to stratify tumors based on gene expression. A subset of 55 tumors with extensive follow-up was used to identify gene sets that predicted outcome. The predictive gene set was further tested in previously published data sets. Results We used different statistical methods to identify three gene sets associated with disease free survival. A fourth gene set, consisting of 21 genes in common to all three sets, also had the ability to predict patient outcome. To validate the predictive utility of this derived gene set, it was tested in two published data sets from other groups. This gene set resulted in significant separation of patients on the basis of survival in these data sets, correctly predicting outcome in 62–65% of patients. By comparing outcome prediction within subgroups based on ER status, grade, and nodal status, we found that our gene set was most effective in predicting outcome in ER positive and node negative tumors. Conclusion This robust gene selection with extensive validation has identified a predictive gene set that may have clinical utility for outcome prediction in breast cancer patients.</p
    corecore