1,839 research outputs found
Inverse perturbation method for structural redesign with frequency and mode shape constraints
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76581/1/AIAA-8777-705.pd
Nonlinear incremental inverse perturbation method for structural redesign
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76715/1/AIAA-1983-892-392.pd
A Finite Element Study of Electromagnetic Riveting
Electromagnetic riveting, used in some aerospace assembly processes, involves rapid deformation, leading to the finished rivet configuration. Analysis of this process is described for the case of an aluminum rivet joining typical aluminum structural elements. The analysis is based on a finite element method that includes the effects of heating, due to rapid plastic deformation of the material, on the material properties. Useful details of material deformation and thermal history and the final rivet and structure configuration and states of stress and strain are obtained. These results have significant implications in the design, implementation, and improvement of practical fastening processes in the aerospace industry
Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)
Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described
The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve from Red Clump Stars
We use Hubble Space Telescope (HST) observations of red clump stars taken as
part of the Small Magellanic Cloud Investigation of Dust and Gas Evolution
(SMIDGE) program to measure the average dust extinction curve in a ~ 200 pc x
100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). The
rich information provided by our 8-band ultra-violet through near-infrared
photometry allows us to model the color-magnitude diagram of the red clump
accounting for the extinction curve shape, a log-normal distribution of
, and the depth of the stellar distribution along the line of sight. We
measure an extinction curve with = 2.65
0.11. This measurement is significantly larger than the equivalent values
of published Milky Way = 3.1 () and SMC Bar =
2.74 () extinction curves. Similar extinction curve offsets in
the Large Magellanic Cloud (LMC) have been interpreted as the effect of large
dust grains. We demonstrate that the line-of-sight depth of the SMC (and LMC)
introduces an apparent "gray" contribution to the extinction curve inferred
from the morphology of the red clump. We show that no gray dust component is
needed to explain extinction curve measurements when a full-width half-max
depth of 10 2 kpc in the stellar distribution of the SMC (5 1 kpc
for the LMC) is considered, which agrees with recent studies of Magellanic
Cloud stellar structure. The results of our work demonstrate the power of
broad-band HST imaging for simultaneously constraining dust and galactic
structure outside the Milky Way.Comment: 16 pages, 12 figures, 5 tables. Accepted for publication in Ap
Admissible large perturbations in structural redesign
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76363/1/AIAA-10551-828.pd
Nanoindentation and Strain Characteristics of Nanostructured Boride/Nitride Films
The hardness, elastic modulus, and elastic recovery of nanostructured boride/nitride films 1–2 µm thick have been investigated by the nanoindentation technique under the maximum loads over a wide range (from 5 to 100 mN). It is demonstrated that only the hardness parameters remain constant at small loads (5–30 mN). The data obtained are discussed and compared with the parameters determined by other methods
- …