199 research outputs found

    Individuals with familial hypercholesterolemia and cardiovascular events have higher circulating Lp(a) levels

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is a major cause of mortality and morbidity. Increased low-density lipoprotein cholesterol (LDL-C) level is its major risk factor. Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated LDL-C since birth and subsequent premature CVD. There is a heterogeneity in the CVD onset in patients with FH. This is potentially due to the presence of other independent risk factors. Lipoprotein(a) [Lp(a)] is an LDL-like particle and represents a strong risk factor for CVD. OBJECTIVE: Our objective was to understand the contribution of Lp(a) in the susceptibility to CVD in individuals with genetic diagnosis of FH. METHODS: We measured Lp(a) levels in 2 independent and well-characterized genetic-FH cohorts: the FH-Gothenburg cohort (n = 190) and the FH-CEGP Milan cohort (n = 160). The genetic diagnosis was performed by targeted next-generation sequencing (FH-Gothenburg and part of the FH-CEGP Milan cohort), or by Sanger sequencing. RESULTS: We show that among individuals with genetic diagnosis of FH, those with previous CVD had higher Lp(a) levels. In addition, analyzing the response to the lipid-lowering therapies, we have also shown that statins had the same LDL-C-lowering effect irrespective of the type of FH-causative mutation. However, when we examined the lipid-lowering effect of proprotein convertase subtilisin/kexin type 9 inhibition by antibodies, we observed a trend in a better reduction of the LDL-C level in carriers of nonsense mutations. CONCLUSION: In conclusion, our results suggest that Lp(a) contributes to CVD onset in individuals with genetic diagnosis of FH. Our finding supports the importance to identify an efficacious therapy to lower Lp(a) in patients with FH to prevent CVD onset or recurrence

    Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction

    Get PDF
    Therapeutic cell retention and engraftment are critical for myocardial regeneration. Underlying mechanisms, including the role of tissue perfusion, are not well understood. In Wistar Kyoto rats, syngeneic cardiosphere-derived cells (CDCs) were injected intramyocardially, after experimental myocardial infarction. CDCs were labeled with [18F]-FDG (n = 7), for quantification of 1-h retention, or with sodium-iodide-symporter gene (NIS; n = 8), for detection of 24-h engraftment by reporter imaging. Perfusion was imaged simultaneously. Infarct size was 37 ± 9 and 38 ± 9% of LV in FDG and NIS groups. Cell signal was located in the infarct border zone in all animals. No significant relationship was observed between infarct size and 1-h CDC retention (r = −0.65; P = 0.11). However, infarct size correlated significantly with 24-h engraftment (r = 0.75; P = 0.03). Residual perfusion at the injection site was not related to cell retention/engraftment. Larger infarcts are associated with improved CDC engraftment. This observation encourages further investigation of microenvironmental conditions after ischemic damage and their role in therapeutic cell survival

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children

    The Mating-Type Chromosome in the Filamentous Ascomycete Neurospora tetrasperma Represents a Model for Early Evolution of Sex Chromosomes

    Get PDF
    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first “evolutionary stratum”, genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers

    Opposing effects of monomeric and pentameric C-reactive protein on endothelial progenitor cells

    Get PDF
    C-reactive protein (CRP) has been linked to the pathogenesis of atherosclerosis. The dissociation of native, pentameric (p)CRP to monomeric (m)CRP on the cell membrane of activated platelets has recently been demonstrated. The dissociation of pCRP to mCRP may explain local pro-inflammatory reactions at the site of developing atherosclerotic plaques. As a biomarker, pCRP predicts cardiovascular adverse events and so do reduced levels and function of circulating endothelial progenitor cells (EPCs). We hypothesised that mCRP and pCRP exert a differential effect on EPC function and differentiation. EPCs were treated with mCRP or pCRP for 72 h, respectively. Phenotypical characterisation was done by flow cytometry and immunofluorescence microscopy, while the effect of mCRP and pCRP on gene expression was examined by whole-genome gene expression analysis. The functional capacity of EPCs was determined by colony forming unit (CFU) assay and endothelial tube formation assay. Double staining for acetylated LDL and ulex lectin significantly decreased in cells treated with pCRP. The length of tubuli in a matrigel assay with HUVECs decreased significantly in response to pCRP, but not to mCRP. The number of CFUs increased after pCRP treatment. RNA expression profiling demonstrated that mCRP and pCRP cause highly contradictory gene regulation. Interferon-responsive genes (IFI44L, IFI44, IFI27, IFI 6, MX1, OAS2) were among the highly up-regulated genes after mCRP, but not after pCRP treatment. In conclusion, EPC phenotype, genotype and function were differentially affected by mCRP and pCRP, strongly arguing for differential roles of these two CRP conformations. The up-regulation of interferon-inducible genes in response to mCRP may constitute a mechanism for the local regulation of EPC function

    Inefficient purifying selection: the mammalian Y chromosome in the rodent genus Mus

    Full text link
    Two related genes with potentially similar functions, one on the Y chromosome and one on the X chromosome, were examined to determine if they evolved differently because of their chromosomal positions. Six hundred fifty-seven base pairs of coding sequence of Jarid1d ( Smcy ) on the Y chromosome and Jarid1c ( Smcx ) on the X chromosome were sequenced in 13 rodent taxa. An analysis of replacement and silent substitutions, using a counting method designed for samples with small evolutionary distances, showed a significant difference between the two genes. The different patterns of replacement and silent substitutions within Jarid1d and Jarid1c may be a result of evolutionary mechanisms that are particularly strong on the Y chromosome because of its unique properties. These findings are similar to results of previous studies of Y chromosomal genes in these and other mammalian taxa, suggesting that genes on the mammalian Y evolve in a chromosome-specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46987/1/335_2005_Article_50.pd
    corecore