1,901 research outputs found
Classical and Quantum-like approaches to Charged-Particle Fluids in a Quadrupole
A classical description of the dynamics of a dissipative charged-particle
fluid in a quadrupole-like device is developed. It is shown that the set of the
classical fluid equations contains the same information as a complex function
satisfying a Schrodinger-like equation in which Planck's constant is replaced
by the time-varying emittance, which is related to the time-varying temperature
of the fluid. The squared modulus and the gradient of the phase of this complex
function are proportional to the fluid density and to the current velocity,
respectively. Within this framework, the dynamics of an electron bunch in a
storage ring in the presence of radiation damping and quantum-excitation is
recovered. Furthermore, both standard and generalized (including dissipation)
coherent states that may be associated with the classical particle fluids are
fully described in terms of the above formalism.Comment: LaTex, to appear in Physica Script
Dilution of Precision-Based Lunar Navigation Assessment for Dynamic Position Fixing
The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the moon, missions under the Exploration Systems Initiative will require navigation on the moon's limb and far-side. As these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this paper, a Dilution of Precision (DoP) based analysis of the performance of a network of Moon orbiting satellites is provided. The analysis extends previous analysis of a Lunar Network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions are with regard to the navigation receiver and satellite visibility. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP (i.e., GDoP, PDoP, etc.) are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver
Key Issues for Navigation and Time Dissemination in NASA's Space Exploration Program
The renewed emphasis on robotic and human missions within NASA's space exploration program warrants a detailed consideration of how the positions of objects in space will be determined and tracked, whether they be spacecraft, human explorers, robots, surface vehicles, or science instrumentation. The Navigation Team within the NASA Space Communications Architecture Working Group (SCAWG) has addressed several key technical issues in this area and the principle findings are reported here. For navigation in the vicinity of the Moon, a variety of satellite constellations have been investigated that provide global or regional surface position determination and timely services analogous to those offered by GPS at Earth. In the vicinity of Mars, there are options for satellite constellations not available at the Moon due to the gravitational perturbations from Earth, such as two satellites in an aerostationary orbit. Alternate methods of radiometric navigation as considered, including one- and two-way signals, as well as autonomous navigation. The use of a software radio capable of receiving all available signal sources, such as GPS, pseudolites, and communication channels, is discussed. Methods of time transfer and dissemination are also considered in this paper
Realistic Earth escape strategies for solar sailing
With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased
From a certain point of view: sensory phenomenological envisionings of running space and place
The precise ways in which we go about the mundane, repetitive, social actions of everyday life are central concerns of ethnographers and theorists working within the traditions of the sociology of the mundane and sociological phenomenology. In this article, we utilize insights derived from sociological phenomenology and the newly developing field of sensory sociology to investigate a particular, mundane, and embodied social practice, that of training for distance running in specific places: our favored running routes. For, despite a growing body of ethnographic studies of particular sports, little analytic attention has been devoted to the actual, concrete practices of âdoingâ or âproducingâ sporting activity, particularly from a sensory ethnographic perspective. Drawing upon data from a 2-year joint autoethnographic research project, here we explore the visual dimension, focusing upon three key themes in relation to our runnersâ visualization of, respectively, (1) hazardous places, (2) performance places, (3) the timeâspaceâplace nexus
Changing the academic culture: Valuing patents and commercialization toward tenure and career advancement
There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future
Microbial profiling of dental plaque from mechanically ventilated patients
© 2015 The Authors. Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97 % gene similarity cut-off for bacterial species level identifications. A significant âmicrobial shiftâ occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection
- âŠ