48 research outputs found

    Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK

    Get PDF
    Background: Circadian oscillation of clock-controlled gene expression is mainly regulated at the transcriptional level. Heterodimers of CLOCK and BMAL1 act as activators of target gene transcription; however, interactions of PER and CRY proteins with the heterodimer abolish its transcriptional activation capacity. PER and CRY are therefore referred to as negative regulators of the circadian clock. To further elucidate the mechanism how positive and negative components of the clock interplay, we characterized the interactions of PER2, CRY1 and CRY2 with BMAL1 and CLOCK using a mammalian two-hybrid system and co-immunoprecipitation assays. Results: Both PER2 and the CRY proteins were found to interact with BMAL1 whereas only PER2 interacts with CLOCK. CRY proteins seem to have a higher affinity to BMAL1 than PER2. Moreover, we provide evidence that PER2, CRY1 and CRY2 bind to different domains in the BMAL1 protein. Conclusion: The regulators of clock-controlled transcription PER2, CRY1 and CRY2 differ in their capacity to interact with each single component of the BMAL1-CLOCK heterodimer and, in the case of BMAL1, also in their interaction sites. Our data supports the hypothesis that CRY proteins, especially CRY1, are stronger repressors than PER proteins

    Carbohydrate receptor-mediated gene transfer to human T leukaemic cells

    Get PDF
    The mucin-type carbohydrate Tn cryptantigen (GalNAcα1-O-Ser/Thr, where GalNAc is N-acetyl-D-galactosamine) is expressed in many carcinomas, in haemopoietic disorders including the Tn syndrome, and on human immunodeficiency virus (HIV) coat glycoproteins, but is not expressed on normal, differentiated cells because of the expression of a Tn-processing galactosyltransferase. Using Jurkat T leukaemic cells which express high levels of Tn antigen due to deficient Tn galactosylation, we have established the Tn antigen-mediated gene transfer and demonstrate the considerable efficiency of this approach. We used poly(L-lysine) conjugates of the monoclonal antibody 1E3 directed against the Tn antigen to deliver the luciferase and β-galactosidase reporter genes to Jurkat cells by receptor-mediated endocytosis. Addition of unconjugated 1E3 reduced transfection efficiency in a concentration-dependent manner and incubation with free GalNAc abolished DNA transfer completely, indicating that gene delivery is indeed mediated by the Tn antigen. Pre-treatment of Jurkat cells with Vibrio cholerae sialidase, which uncovers additional Tn antigens, resulted in an improvement of gene transfection. Both human and chicken adenovirus particles attached to the DNA/polylysine complex strongly augmented transgene expression. When the β-galactosidase (lacZ) gene was delivered to Jurkat cells by Tn-mediated endocytosis, up to 60% of the cells were positive in the cytochemical stain using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) as a chromogenic substrate. The efficiency of the transferrin receptor-mediated DNA uptake into Jurkat cells was comparatively low, although these cells were shown to express considerable amounts of transferrin receptor. We show here that a mucin-type carbohydrate antigen mediates highly efficient DNA uptake by endocytosis into Jurkat T cells. This method represents a 50-fold improvement of Jurkat cell transfection efficiency over other physical gene transfer techniques. Specific gene delivery to primary cancer cells exhibiting Tn epitopes may especially be desirable in immunotherapy protocol

    Transcriptional repression by methylation: cooperativity between a CpG cluster in the promoter and remote CpG-rich regions

    Get PDF
    AbstractCytosine methylation of binding sites for transcription factors is a straightforward mechanism to prevent transcription, while data on an indirect mechanism, by methylation outside of the factor binding sites, are still scarce. We have studied the latter effect using a model promoter construct. For this, a 69 bp G + C rich DNA segment with a cluster of 14 CpG sites was inserted between upstream lexA sites and the TATA box. Transcription was measured in transient transfection assays with lexA-VP16 as an activating factor. When the entire plasmid was methylated at all CpGs before transfection, transcription was blocked (to 3% residual activity), whereas transcription was only mildly inhibited (to 60%) by methylation of a control plasmid that lacked the 69 bp CpG cluster. However, the effect could not simply be attributed to methylation of the CpG cluster: neither a methylated CpG cluster in an otherwise methylation-free reporter gene plasmid, nor the methylated plasmid with an unmethylated CpG cluster, inhibited transcription considerably (69% and 44% remaining activity, respectively). The data presented here suggest that a minimal length of methylated DNA in the promoter is required for repression, and imply that concomitant methylation of CpGs in the promoter region and in remote sequences can cooperatively block transcription, without the need to methylate any binding sites for transcription factors. We also note that the cooperation for a negative effect described here bears an analogy to transcriptional activation, where a promoter often cooperates with a remote enhancer

    Carbohydrate receptor-mediated gene transfer to human T leukaemic cells

    Get PDF
    The mucin-type carbohydrate Tn cryptantigen (GalNAcα1-O-Ser/Thr, where GalNAc is N-acetyl-D-galactosamine) is expressed in many carcinomas, in haemopoietic disorders including the Tn syndrome, and on human immunodeficiency virus (HIV) coat glycoproteins, but is not expressed on normal, differentiated cells because of the expression of a Tn-processing galactosyltransferase. Using Jurkat T leukaemic cells which express high levels of Tn antigen due to deficient Tn galactosylation, we have established the Tn antigen-mediated gene transfer and demonstrate the considerable efficiency of this approach. We used poly(L-lysine) conjugates of the monoclonal antibody 1E3 directed against the Tn antigen to deliver the luciferase and β-galactosidase reporter genes to Jurkat cells by receptor-mediated endocytosis. Addition of unconjugated 1E3 reduced transfection efficiency in a concentration-dependent manner and incubation with free GalNAc abolished DNA transfer completely, indicating that gene delivery is indeed mediated by the Tn antigen. Pre-treatment of Jurkat cells with Vibrio cholerae sialidase, which uncovers additional Tn antigens, resulted in an improvement of gene transfection. Both human and chicken adenovirus particles attached to the DNA/polylysine complex strongly augmented transgene expression. When the β-galactosidase (lacZ) gene was delivered to Jurkat cells by Tn-mediated endocytosis, up to 60% of the cells were positive in the cytochemical stain using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) as a chromogenic substrate. The efficiency of the transferrin receptor-mediated DNA uptake into Jurkat cells was comparatively low, although these cells were shown to express considerable amounts of transferrin receptor. We show here that a mucin-type carbohydrate antigen mediates highly efficient DNA uptake by endocytosis into Jurkat T cells. This method represents a 50-fold improvement of Jurkat cell transfection efficiency over other physical gene transfer techniques. Specific gene delivery to primary cancer cells exhibiting Tn epitopes may especially be desirable in immunotherapy protocol

    Serine / threonine protein phosphatase 5 (PP5) participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling

    Get PDF
    BACKGROUND: In most cells glucocorticoid receptors (GR) reside predominately in the cytoplasm. Upon hormone binding, the GR translocates into the nucleus, where the hormone-activated GR-complex regulates the transcription of GR-responsive genes. Serine/threonine protein phosphatase type 5 (PP5) associates with the GR-heat-shock protein-90 complex, and the suppression of PP5 expression with ISIS 15534 stimulates the activity of GR-responsive reporter plasmids, without affecting the binding of hormone to the GR. RESULTS: To further characterize the mechanism by which PP5 affects GR-induced gene expression, we employed immunofluorescence microscopy to track the movement of a GR-green fluorescent fusion protein (GR-GFP) that retained hormone binding, nuclear translocation activity and specific DNA binding activity, but is incapable of transactivation. In the absence of glucocorticoids, GR-GFP localized mainly in the cytoplasm. Treatment with dexamethasone results in the efficient translocation of GR-GFPs into the nucleus. The nuclear accumulation of GR-GFP, without the addition of glucocorticoids, was also observed when the expression of PP5 was suppressed by treatment with ISIS 15534. In contrast, ISIS 15534 treatment had no apparent effect on calcium induced nuclear translocation of NFAT-GFP. CONCLUSION: These studies suggest that PP5 participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling, and that the GR-induced transcriptional activity observed when the expression of PP5 is suppressed by treatment with ISIS 15534 results from the nuclear accumulation of GR in a form that is capable of binding DNA yet still requires agonist to elicit maximal transcriptional activation

    The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation

    Get PDF
    We report here studies that integrate data of respiration rate from mouse skeletal muscle in response to leptin and pharmacological interference with intermediary metabolism, together with assays for phosphatidylinositol 3-kinase (PI3K) and AMP- activated protein kinase (AMPK). Our results suggest that the direct effect of leptin in stimulating thermogenesis in skeletal muscle is mediated by substrate cycling between de novo lipogenesis and lipid oxidation, and that this cycle requires both PI3K and AMPK signaling. This substrate cycling linking glucose and lipid metabolism to thermogenesis provides a novel thermogenic mechanism by which leptin protects skeletal muscle from excessive fat storage and lipotoxicity

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage
    corecore